China best Cardan Universal Joint U-Joint Cross Joint 5-469X

Product Description

Cardan Universal Joint u-joint cross joint 5-469X
Features:
1, Material: C45(1045) carbon steel, 40Cr steel, 20CrMnTi
2, Excellent performance, long service life and competitive price.
3, Great intensity and rigidity.
4, On time delivery
5, Own ISO9000, TS16949 Certificates
6, Best price with the highest quality.

Quality Control:
1. Chemical Composition confirm after Ingot
2. Hardness after Heat Treatment
3. Final Dimension Check

Quality Assurance Document:
All the Q. A Document as per Client Requirement will be submitted when goods ready.
Packing and Shipping
1. Standard: Wooden case or carton for export

2. Delivery: As per contract delivery on time

3. Shipping: As per client request. We can accept CIF, Door to Door etc. Or client authorized agent we supply all the necessary assistant

Our service:
1. Customized and designed according to the customers’ sample, drawing or requirements
2. Following the customers’ requirements or as our usual packing
3. High quality and competitive price and pure-hearted service.
4. Strictly quality control according to ISO9001: 2008.
5. Flexible minimum order quantity
Our universal joints are with good quality and reasonable price. We can supply you all kinds of u-joints for more than 20 brands’ cars, mechanic machines and agriculture machines.

We can also supply universal joint, heavy duty universal joint, CHINAMFG universal joint, gmb universal joints, small universal joint shaft, universal joint bearing, agriculture universal joints, small universal joints, universal joint yoke, universal joint coupling, universal joint spider, tractor universal joint, CHINAMFG universal joint, universal joints cross bearing, plastic universal joint, universal joint cross, universal joint for komatsu, universal joint shaft, industrial universal joint, universal joint connector, CHINAMFG universal joint, universal joint impact sockets, steering universal joint, universal joint pin, etc.
 

FIG Part No. D mm O mm L mm Spicer Precision GMB
A GUN26 23.82   61.3 37125 -11975 N2461 UJ110
A GUN30 30.17   90.1 37125-85461 N3092 UJ115
A GUN32 35.5   119.2 37125-58026 N36119 UJ117
A GUN33 43   128 37125-99901 ND43128 UJ119
A GUN36 25   77.6 37125-4101 NP2578 UJ120
A GUN44 20.5   56.5 37125-99000   UJ124
A GUN45 20.07   52.4 37125-H8500    
A GUN47 27   81.75 37125-25571    
A GUN48 27   81.75 37125-7F571    
A GUS2 20.02   35 27100-67000    
A GUS6 20.1   59.8 27200-6571    
A GUS7 25   63.8 27200-83571    
A GUSR-3 28   52.6 6232-4300    
A GUT-11 20   57 5711-10011 T2057 UJ212
A GUT-14 28.5   77.9 5711-6571 T2978 UJ214
A GUT-15 34   107 5711-55011 T34107 UJ216
A GUT-16 40   118 5711-55571 T40119 UJ215
A GUT-19 20   57 5711-1571 T2057 UJ222
A GUT-22 40   118 5711-55571    
A GUT-24 22.06   57.5      
A K5-13XR 26.99   81.76      
A K5GB10R 30.188   106.35      
A K5L4R 27   74.6      
A KC2832ADW 40   115.6      
A KC2932ADW 44   129      
A S-E129 41.27   126      
A S-F365 55.03   164      
A S-F366 60.03   162      
A SPL140-1X 49.22   139      
A SPL170-1X 55   165      
A SPL250-1X 60   163      
A SPL70-1X 34.9   126.1   CZ256  
A SPL90-1X 41.28   126   CZ271  
A U040 23.8   61.3 5-101X/502X 340 UJ040
A U050 23.8   61.3 5-102X/5-111X 341 UJ050
A U080 26.94   61.85 5-310X 437G UJ080
A U100 27   81.8 5-153X/5-204X 329/521 UJ100
A U110 27   74.6 5-94X 344 UJ110
A U126 16.05   40 ST1640 UJ126
A U180 20   57 5-1500X 395 UJ180
A U189 40   118 GUT16   U189

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Material: Steel
Type: Universal Joint
Transport Package: Standard Sea Worthy Package
Specification: ISO
Trademark: MW
Customization:
Available

|

Customized Request

cardan shaft

Can cardan joints be used in both horizontal and vertical orientations?

Yes, cardan joints can be used in both horizontal and vertical orientations. Cardan joints, also known as universal joints, are flexible mechanical couplings that transmit torque between misaligned shafts. Their design allows for angular movement and compensation of misalignments in various orientations. Here’s a detailed explanation of how cardan joints can be used in both horizontal and vertical orientations:

Horizontal Orientation: In a horizontal orientation, the input and output shafts of the cardan joint are aligned horizontally, typically parallel to the ground. The joint is capable of transmitting torque smoothly and efficiently between the misaligned shafts while accommodating angular, parallel, and axial misalignments. This makes it suitable for a wide range of horizontal applications, including automotive drivetrains, industrial machinery, and agricultural equipment.

Vertical Orientation: In a vertical orientation, the input and output shafts of the cardan joint are aligned vertically, with one shaft positioned above the other. The joint is still capable of transmitting torque and compensating for misalignments in this configuration. However, it is important to consider the effects of gravity and the additional load imposed on the joint due to the weight of the shafts and any connected components. Adequate support and proper bearing selection should be considered to ensure reliable operation in vertical applications.

Whether in horizontal or vertical orientations, cardan joints offer several advantages that make them versatile for various applications:

  • Misalignment Compensation: Cardan joints excel at compensating for angular, parallel, and axial misalignments between shafts. This flexibility allows for smooth torque transmission and reduces stress on the connected components.
  • Torque Transmission: Cardan joints are capable of transmitting high levels of torque between misaligned shafts. This makes them suitable for applications that require the transfer of substantial power.
  • Durability: Cardan joints are typically constructed from durable materials, such as alloy steels, which provide excellent strength and resistance to fatigue and wear. This durability enables them to withstand the demands of various orientations and operating conditions.
  • Compact Design: Cardan joints have a compact design, allowing for efficient installation and integration within the system, regardless of the orientation. This is particularly advantageous in applications with space constraints.
  • Versatility: Cardan joints are available in various sizes and configurations to accommodate different orientations and applications. They can be customized to meet specific torque and speed requirements.

It is important to note that specific considerations may apply depending on the application and the magnitude of misalignments. Factors such as load capacity, lubrication, bearing arrangement, and maintenance should be taken into account to ensure optimal performance and longevity of the cardan joint.

In summary, cardan joints can be used in both horizontal and vertical orientations due to their ability to compensate for misalignments and transmit torque between shafts. Their versatility, durability, and compact design make them suitable for a wide range of applications in various orientations.

cardan shaft

How do you retrofit an existing mechanical system with a cardan joint?

When retrofitting an existing mechanical system with a cardan joint, careful planning and consideration of various factors are necessary to ensure a successful integration. The retrofitting process involves modifying the system to accommodate the cardan joint’s requirements for torque transmission and misalignment compensation. Here’s a detailed explanation of how to retrofit an existing mechanical system with a cardan joint:

  1. Evaluate the Existing System: Begin by thoroughly evaluating the existing mechanical system to understand its design, components, and operational requirements. Identify the areas where a cardan joint can be integrated effectively and assess the feasibility of retrofitting.
  2. Identify the Integration Points: Determine the specific locations within the system where the cardan joint will be installed. This could include areas where torque transmission or misalignment compensation is required, such as connections between shafts, pulleys, or other rotating components.
  3. Measurements and Compatibility: Take accurate measurements of the existing components and spaces where the cardan joint will be installed. Ensure that the dimensions and specifications of the cardan joint are compatible with the available space and the system’s requirements. Consider factors such as shaft sizes, torque ratings, misalignment angles, and operating conditions.
  4. Design Modifications: Based on the evaluation and measurements, make necessary design modifications to accommodate the cardan joint. This may involve modifying shaft ends, adding or removing components, or adjusting mounting positions. Ensure that the modifications do not compromise the structural integrity or functionality of the system.
  5. Installation and Alignment: Install the cardan joint at the identified integration points according to the manufacturer’s guidelines and engineering best practices. Pay attention to proper alignment, ensuring that the joint aligns with the shafts and other connected components. Precise alignment is crucial for efficient torque transmission and to prevent excessive wear or failure.
  6. Secure Mounting: Properly secure the cardan joint to the system, ensuring that it is firmly and securely mounted. Use appropriate fasteners, couplings, or brackets to hold the joint in place and prevent any movement or vibration that could affect its performance.
  7. Lubrication and Maintenance: Follow the manufacturer’s recommendations for lubrication and maintenance of the cardan joint. Proper lubrication helps reduce friction, wear, and heat generation, ensuring smooth operation and longevity of the joint. Establish a maintenance schedule to regularly inspect and maintain the retrofit components to prevent any potential issues.
  8. Testing and Validation: After the retrofitting is complete, perform thorough testing to validate the functionality and performance of the retrofitted system. Test for torque transmission, misalignment compensation, and overall system operation. Monitor the system during operation to ensure that the cardan joint performs as expected and does not introduce any adverse effects.

It is essential to consult with experienced engineers or professionals specializing in retrofitting and cardan joint applications during the process. They can provide valuable guidance, expertise, and assistance in selecting the appropriate cardan joint, making design modifications, and ensuring a successful retrofit of the existing mechanical system.

cardan shaft

How does a cardan joint accommodate misalignment between shafts?

A cardan joint, also known as a universal joint or U-joint, is designed to accommodate misalignment between shafts. Its unique structure and mechanism allow for flexibility and compensation when there are angular or axial deviations between the input and output shafts. Here’s a detailed explanation of how a cardan joint accommodates misalignment:

The cardan joint consists of two yokes, typically fork-shaped, and a cross-shaped member called the cross or spider. The yokes are attached to the input and output shafts, while the cross sits in the center, connecting the yokes. The cross has four arms, and each arm has a bearing cap that holds a bearing. The bearings allow the cross to rotate within the yokes.

When the input and output shafts are perfectly aligned, the cardan joint operates in a straight configuration, and the cross remains in a centered position. However, when misalignment occurs, such as angular misalignment or axial misalignment, the cardan joint can flex and adjust to accommodate the deviation.

Angular Misalignment: When the input and output shafts are at an angle to each other, the cardan joint can accommodate the angular misalignment. As the input shaft rotates, it causes the yoke attached to it to rotate. This rotation is transmitted to the cross through the bearing cap and bearing. As the cross rotates, it causes the other yoke attached to the output shaft to rotate. The angular misalignment is compensated by the ability of the cross to tilt and follow the changing angles of the shafts. The bearings and bearing caps allow the cross to pivot and adjust its position, ensuring that the rotational motion is smoothly transmitted despite the misalignment.

Axial Misalignment: In cases of axial misalignment, where there is a difference in the axial position of the input and output shafts, the cardan joint can also accommodate the misalignment. The axial misalignment can cause the yokes to be slightly offset along the axis. However, the flexibility of the cardan joint allows the cross to adjust its position and maintain the connection between the yokes. The bearings and bearing caps within the cross allow it to move slightly along the axis, compensating for the axial misalignment and ensuring that the rotational motion can still be transmitted.

By allowing the cross to tilt and adjust its position, the cardan joint effectively accommodates misalignment between shafts. It provides the flexibility needed to transmit rotational motion and torque even when the input and output shafts are not perfectly aligned. The ability of the cardan joint to compensate for misalignment makes it a versatile component in various applications where flexibility and misalignment tolerance are required.

China best Cardan Universal Joint U-Joint Cross Joint 5-469X  China best Cardan Universal Joint U-Joint Cross Joint 5-469X
editor by CX 2024-02-09