China best Swcz Series Industrial Universal Shaft/Cardan Joint

Product Description

SWCZ Series-Heavy-Duty Designs Cardan shaft

Designs

Data and Size of SWCZ Series Universal Joint Couplings

 

Type Design
Data
Item
SWCZ
  680
SWCZ
 700
SWCZ
  750
SWCZ
  780
SWCZ
 800
SWCZ
 840
SWCZ
 900
SWCZ
  920
SWCZ
 1000
SWCZ
1050
SWCZ
1100
SWCZ
1200
C L 1540 1600 1840 1920 1920 2120 2280 2280 2380 2480 2500 2720
m(kg) 3150 3450 4300 4680 5050 6400 8420 8950 10600 12100 13500 16900
D L 1940 2100 2400 2500 2500 2680 2950 2950 3130 3200 3300 3570
m(kg) 3220 3530 4500 5400 5800 7470 9980 10500 12300 14500 15800 19500
E L 3230 3460 3620 4000 4000 4250 4580 4850 4770 4950 5100 5660
LV 250 250 250 250 250 250 300 300 300 300 300 300
m(kg) 4880 5400 8000 8450 9070 11800 15900 16500 19900 22000 27500 34800
  Tn(N·m) 1640 1750 2250 2500 2670 3100 3800 4050 5200 6500 6900 9000
  Tf(N·m) 980 1050 1350 1500 1600 1860 2280 2430 3120 3900 4140 5400
  β(°) 15 15 15 15 15 15 15 15 15 15 15 15
  D 680 700 750 780 800 840 900 920 1000 1060 1100 1200
  Df 680 700 750 780 800 840 900 920 1000 1060 1100 1200
  D1 635 635 695 725 745 775 935 855 915 920 1015 1100
  D2(H9) 550 570 610 640 660 710 740 760 840 900 920 1000
  D3 560 560 620 660 660 660 750 750 790 800 850 900
  Lm 385 400 480 480 480 530 570 570 595 620 625 680
  k 70 70 95 95 95 110 120 120 130 130 130 130
  n 24 24 24 24 24 24 24 24 24 20 20 20
  d 26 26 31 31 36 38 38 38 50 45 50 58
  Flange bolt M24 M24 M30 M30 M30 M36 M36 M36 M48 M42 M48 M56

1. Notations: 
L=Standard length, or compressed length for designs with length compensation; 
LV=Length compensation; 
M=Weight; 
Tn=Nominal torque(Yield torque 50% over Tn); 
TF=Fatigue torque, I. E. Permissible torque as determined according to the fatigue strength
Under reversing loads; 
β=Maximum deflection angle; 
MI=weight per 100mm tube
2. Millimeters are used as measurement units except where noted; 
3. Please consult us for customizations regarding length, length compensation and
Flange connections. 
(DIN or SAT etc. )

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Alloy Steel
Load: Drive Shaft
Stiffness & Flexibility: Stiffness / Rigid Axle
Journal Diameter Dimensional Accuracy: IT6-IT9
Axis Shape: Straight Shaft
Shaft Shape: Hollow Axis
Customization:
Available

|

Customized Request

cardan shaft

How do you prevent backlash and vibration issues in a cardan joint?

Preventing backlash and vibration issues in a cardan joint requires careful design considerations and proper maintenance. Here are some measures that can be taken to minimize backlash and vibration problems:

  • High-Quality Manufacturing and Tolerances: Ensuring that the cardan joint is manufactured to high-quality standards and tight tolerances is crucial for minimizing backlash. Precision machining and assembly techniques can help reduce clearances and improve the overall fit of the joint components, resulting in reduced backlash.
  • Proper Lubrication: Adequate lubrication is essential for reducing friction and minimizing backlash in a cardan joint. Lubricants with appropriate viscosity and properties should be used to ensure smooth operation and reduce wear. Regular maintenance, including lubricant replenishment or replacement as per the manufacturer’s recommendations, is necessary to maintain optimal lubrication and prevent backlash issues.
  • Alignment and Balance: Proper alignment of the cardan joint and the connected components is critical for minimizing backlash and vibration. Misalignment can lead to uneven loading and increased stress on the joint, resulting in backlash and vibration. Ensuring precise alignment during installation and periodic checks for alignment deviations can help prevent these issues. Balancing the rotating components, such as the driveshaft, can also minimize vibration problems.
  • Reducing Operating Angles: Operating the cardan joint within its specified angular limits can help minimize backlash and vibration. Exceeding the recommended operating angles can cause increased misalignment, leading to higher levels of backlash and vibration. If large operating angles are necessary, a constant velocity joint or alternative coupling mechanism may be considered to achieve smoother motion and reduced backlash.
  • Regular Maintenance and Inspection: Performing regular maintenance and inspections on the cardan joint is crucial for preventing backlash and vibration issues. This includes checking for wear, proper lubrication, alignment deviations, and any signs of damage or fatigue. Any detected issues should be promptly addressed to prevent further deterioration and ensure the optimal performance of the joint.
  • Vibration Dampening: In some cases, additional measures can be taken to dampen vibrations in the system. This can include the use of vibration-dampening materials or techniques, such as rubber bushings or vibration isolators, at the connection points of the cardan joint. These measures can help absorb and dampen vibrations, reducing their impact on the joint and the connected components.

By implementing these preventive measures, the potential backlash and vibration issues in a cardan joint can be minimized. It is important to consider the specific requirements of the application and follow the manufacturer’s guidelines for installation, maintenance, and operation to ensure the optimal performance and longevity of the joint.

cardan shaft

What are the safety considerations when working with cardan joints?

Working with cardan joints requires careful attention to safety to prevent accidents, injuries, and equipment damage. Cardan joints are mechanical components used for torque transmission and misalignment compensation, and they operate under various loads and conditions. Here are important safety considerations to keep in mind when working with cardan joints:

  1. Proper Training and Knowledge: Ensure that individuals working with cardan joints have proper training and understanding of their operation, installation, and maintenance. Adequate knowledge of safe working practices, procedures, and potential hazards associated with cardan joints is crucial.
  2. Personal Protective Equipment (PPE): Use appropriate personal protective equipment, such as safety glasses, gloves, and protective clothing, when handling cardan joints. PPE protects against potential hazards like flying debris, sharp edges, or accidental contact with rotating components.
  3. Lockout/Tagout: Before performing any maintenance or repair work involving cardan joints, follow lockout/tagout procedures to isolate and de-energize the system. This prevents accidental startup or movement of machinery, ensuring the safety of personnel working on or near the cardan joints.
  4. Secure Mounting and Fastening: Ensure that cardan joints are securely mounted and properly fastened to prevent unexpected movement or dislodgment during operation. Loose joints or fasteners can lead to component failure, sudden movements, or damage to other parts of the system.
  5. Torque and Load Limits: Adhere to the recommended torque and load limits specified by the manufacturer for the cardan joints. Exceeding these limits can result in premature wear, deformation, or failure of the joints, posing safety risks and compromising the overall system’s functionality.
  6. Regular Inspection and Maintenance: Implement a regular inspection and maintenance program for the cardan joints. Inspect for signs of wear, damage, or misalignment, and address any issues promptly. Lubricate the joints according to the manufacturer’s recommendations to ensure smooth operation and prevent excessive friction or overheating.
  7. Safe Handling and Lifting: When handling or lifting cardan joints, use appropriate lifting equipment and techniques. Cardan joints can be heavy, and improper lifting can lead to strain or injuries. Ensure that lifting devices have the capacity to handle the weight of the joints safely.
  8. Avoid Contact with Rotating Components: Never reach into or make contact with rotating components of a system that incorporates cardan joints while the system is in operation. Keep loose clothing, jewelry, and other items away from moving parts to prevent entanglement or injury.
  9. Proper Disposal of Used or Damaged Joints: Follow proper disposal procedures for used or damaged cardan joints. Consult local regulations and guidelines for the disposal of mechanical components to minimize environmental impact and ensure compliance with safety and waste management standards.
  10. Manufacturer’s Guidelines: Always refer to and follow the manufacturer’s guidelines, instructions, and warnings specific to the cardan joints being used. Manufacturers provide important safety information, installation procedures, and maintenance recommendations specific to their products.

By addressing these safety considerations, individuals can mitigate potential risks associated with working with cardan joints, promote a safe working environment, and ensure the reliable and efficient operation of the systems they are integrated into.

cardan shaft

Can you explain the purpose of a cardan joint in a drive shaft?

A cardan joint, also known as a universal joint or U-joint, serves a crucial purpose in a drive shaft. The drive shaft is responsible for transmitting rotational motion and torque from the engine or power source to the wheels or driven components. Here’s a detailed explanation of the purpose of a cardan joint in a drive shaft:

A drive shaft is a mechanical component that connects the output of the engine or power source to the wheels or driven components of a vehicle or machinery. It is typically a tubular shaft that rotates at high speeds and transmits the torque generated by the engine to propel the vehicle or operate the machinery. The drive shaft needs to accommodate various factors, including changes in distance, misalignment, and different angles between the engine and the wheels or driven components.

This is where the cardan joint comes into play. The cardan joint is located at each end of the drive shaft, connecting it to the engine or power source and the wheels or driven components. The purpose of the cardan joint is to allow the drive shaft to transmit rotational motion and torque while accommodating the misalignment and changes in angles that occur between these components.

When the engine or power source rotates, it generates rotational motion and torque. The cardan joint at the engine end of the drive shaft receives this rotational motion and torque and transfers it to the drive shaft. As the drive shaft rotates, the cardan joint allows for the changes in angle and misalignment between the engine and the wheels or driven components. This flexibility of the cardan joint ensures that the drive shaft can operate smoothly and transmit power effectively, even when the components are not perfectly aligned or when there are variations in the angles.

At the other end of the drive shaft, another cardan joint is present to connect the drive shaft to the wheels or driven components. This cardan joint receives the rotational motion and torque from the drive shaft and transfers it to the wheels or driven components, allowing them to rotate and perform their intended functions.

The cardan joint in the drive shaft effectively compensates for misalignment, changes in angles, and variations in distance between the engine and the wheels or driven components. It ensures that the rotational motion and torque generated by the engine can be transmitted smoothly and efficiently to propel the vehicle or operate the machinery.

Overall, the purpose of the cardan joint in a drive shaft is to provide flexibility and accommodate misalignment, allowing for the effective transmission of rotational motion and torque between the engine or power source and the wheels or driven components.

China best Swcz Series Industrial Universal Shaft/Cardan Joint  China best Swcz Series Industrial Universal Shaft/Cardan Joint
editor by CX 2024-02-17