China factory 5-8516X Industrial Cardan Shaft Universal Joint

Product Description

5-8516X INDUSTRIAL CARDAN SHAFT UNIVERSAL JOINT
Features:
1, Material: C45(1045) carbon steel, 40Cr steel, 20CrMnTi
2, Excellent performance, long service life and competitive price.
3, Great intensity and rigidity.
4, On time delivery
5, Own ISO9000, TS16949 Certificates
6, Best price with the highest quality.

Quality Control:
1. Chemical Composition confirm after Ingot
2. Hardness after Heat Treatment
3. Final Dimension Check

Quality Assurance Document:
All the Q. A Document as per Client Requirement will be submitted when goods ready.
Packing and Shipping
1. Standard: Wooden case or carton for export

2. Delivery: As per contract delivery on time

3. Shipping: As per client request. We can accept CIF, Door to Door etc. Or client authorized agent we supply all the necessary assistant

Our service:
1. Customized and designed according to the customers’ sample, drawing or requirements
2. Following the customers’ requirements or as our usual packing
3. High quality and competitive price and pure-hearted service.
4. Strictly quality control according to ISO9001: 2008.
5. Flexible minimum order quantity
Our universal joints are with good quality and reasonable price. We can supply you all kinds of u-joints for more than 20 brands’ cars, mechanic machines and agriculture machines.

We can also supply universal joint, heavy duty universal joint, CHINAMFG universal joint, gmb universal joints, small universal joint shaft, universal joint bearing, agriculture universal joints, small universal joints, universal joint yoke, universal joint coupling, universal joint spider, tractor universal joint, CHINAMFG universal joint, universal joints cross bearing, plastic universal joint, universal joint cross, universal joint for komatsu, universal joint shaft, industrial universal joint, universal joint connector, CHINAMFG universal joint, universal joint impact sockets, steering universal joint, universal joint pin, etc.
 

FIG Part No. D mm O mm L mm Spicer Precision GMB
A GUN26 23.82   61.3 37125 -11975 N2461 UJ110
A GUN30 30.17   90.1 37125-85461 N3092 UJ115
A GUN32 35.5   119.2 37125-58026 N36119 UJ117
A GUN33 43   128 37125-99901 ND43128 UJ119
A GUN36 25   77.6 37125-4101 NP2578 UJ120
A GUN44 20.5   56.5 37125-99000   UJ124
A GUN45 20.07   52.4 37125-H8500    
A GUN47 27   81.75 37125-25571    
A GUN48 27   81.75 37125-7F571    
A GUS2 20.02   35 27100-67000    
A GUS6 20.1   59.8 27200-6571    
A GUS7 25   63.8 27200-83571    
A GUSR-3 28   52.6 6232-4300    
A GUT-11 20   57 5711-10011 T2057 UJ212
A GUT-14 28.5   77.9 5711-6571 T2978 UJ214
A GUT-15 34   107 5711-55011 T34107 UJ216
A GUT-16 40   118 5711-55571 T40119 UJ215
A GUT-19 20   57 5711-1571 T2057 UJ222
A GUT-22 40   118 5711-55571    
A GUT-24 22.06   57.5      
A K5-13XR 26.99   81.76      
A K5GB10R 30.188   106.35      
A K5L4R 27   74.6      
A KC2832ADW 40   115.6      
A KC2932ADW 44   129      
A S-E129 41.27   126      
A S-F365 55.03   164      
A S-F366 60.03   162      
A SPL140-1X 49.22   139      
A SPL170-1X 55   165      
A SPL250-1X 60   163      
A SPL70-1X 34.9   126.1   CZ256  
A SPL90-1X 41.28   126   CZ271  
A U040 23.8   61.3 5-101X/502X 340 UJ040
A U050 23.8   61.3 5-102X/5-111X 341 UJ050
A U080 26.94   61.85 5-310X 437G UJ080
A U100 27   81.8 5-153X/5-204X 329/521 UJ100
A U110 27   74.6 5-94X 344 UJ110
A U126 16.05   40 ST1640 UJ126
A U180 20   57 5-1500X 395 UJ180
A U189 40   118 GUT16   U189

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Material: Steel
Type: Universal Joint
Transport Package: Standard Sea Worthy Package
Specification: ISO
Trademark: MW
Customization:
Available

|

Customized Request

cardan shaft

Are cardan joints suitable for both high-torque and high-speed applications?

Cardan joints can be used in a variety of applications, but their suitability for high-torque and high-speed applications depends on several factors. Here’s a detailed explanation of the considerations regarding the use of cardan joints in such scenarios:

1. High-Torque Applications: Cardan joints are generally well-suited for high-torque applications. The design of the joint allows for the transmission of significant torque between misaligned shafts. However, it is important to consider the specific torque requirements and operating conditions. Factors such as the size and type of the joint, the material used, and the application’s torque demands should be taken into account. In extremely high-torque applications, alternative coupling mechanisms such as gear couplings or universal joints may be more appropriate.

2. High-Speed Applications: While cardan joints can operate at relatively high speeds, there are some limitations to consider. At high rotational speeds, cardan joints can experience increased vibration, imbalance, and potential for fatigue failure. The rotating components of the joint can generate centrifugal forces, which can impact the balance and stability of the system. To mitigate these issues, careful design considerations, including balancing and vibration analysis, may be necessary. In some cases, alternative coupling mechanisms like flexible couplings or constant velocity joints may be better suited for high-speed applications.

3. Balancing and Vibration Control: Balancing the rotating components, such as the driveshaft and the joint itself, is essential for minimizing vibration issues in high-torque and high-speed applications. Imbalance can lead to increased vibrations, reduced efficiency, and potential damage to the joint and other system components. Proper balancing techniques, including dynamic balancing during manufacturing or precision balancing during installation, can help achieve smoother operation and minimize vibration problems.

4. Material Selection: The material used in the construction of the cardan joint plays a crucial role in its suitability for high-torque and high-speed applications. High-strength materials, such as alloy steels, are often preferred for their ability to handle increased torque loads. Additionally, materials with good fatigue resistance and high-speed capabilities can help ensure the durability and reliability of the joint in demanding applications.

5. Application-Specific Factors: The suitability of cardan joints for high-torque and high-speed applications also depends on the specific requirements and operating conditions of the application. Factors such as load characteristics, duty cycles, temperature, and environmental conditions should be considered. It is important to consult with the manufacturer or engineering experts to determine the appropriate size, type, and configuration of the cardan joint for a particular high-torque or high-speed application.

In summary, cardan joints can be suitable for both high-torque and high-speed applications, but careful consideration of factors such as torque requirements, speed limitations, balancing, material selection, and application-specific conditions is necessary. Evaluating these factors and consulting with experts can help determine the optimal coupling solution for a given high-torque or high-speed application.

cardan shaft

How do you retrofit an existing mechanical system with a cardan joint?

When retrofitting an existing mechanical system with a cardan joint, careful planning and consideration of various factors are necessary to ensure a successful integration. The retrofitting process involves modifying the system to accommodate the cardan joint’s requirements for torque transmission and misalignment compensation. Here’s a detailed explanation of how to retrofit an existing mechanical system with a cardan joint:

  1. Evaluate the Existing System: Begin by thoroughly evaluating the existing mechanical system to understand its design, components, and operational requirements. Identify the areas where a cardan joint can be integrated effectively and assess the feasibility of retrofitting.
  2. Identify the Integration Points: Determine the specific locations within the system where the cardan joint will be installed. This could include areas where torque transmission or misalignment compensation is required, such as connections between shafts, pulleys, or other rotating components.
  3. Measurements and Compatibility: Take accurate measurements of the existing components and spaces where the cardan joint will be installed. Ensure that the dimensions and specifications of the cardan joint are compatible with the available space and the system’s requirements. Consider factors such as shaft sizes, torque ratings, misalignment angles, and operating conditions.
  4. Design Modifications: Based on the evaluation and measurements, make necessary design modifications to accommodate the cardan joint. This may involve modifying shaft ends, adding or removing components, or adjusting mounting positions. Ensure that the modifications do not compromise the structural integrity or functionality of the system.
  5. Installation and Alignment: Install the cardan joint at the identified integration points according to the manufacturer’s guidelines and engineering best practices. Pay attention to proper alignment, ensuring that the joint aligns with the shafts and other connected components. Precise alignment is crucial for efficient torque transmission and to prevent excessive wear or failure.
  6. Secure Mounting: Properly secure the cardan joint to the system, ensuring that it is firmly and securely mounted. Use appropriate fasteners, couplings, or brackets to hold the joint in place and prevent any movement or vibration that could affect its performance.
  7. Lubrication and Maintenance: Follow the manufacturer’s recommendations for lubrication and maintenance of the cardan joint. Proper lubrication helps reduce friction, wear, and heat generation, ensuring smooth operation and longevity of the joint. Establish a maintenance schedule to regularly inspect and maintain the retrofit components to prevent any potential issues.
  8. Testing and Validation: After the retrofitting is complete, perform thorough testing to validate the functionality and performance of the retrofitted system. Test for torque transmission, misalignment compensation, and overall system operation. Monitor the system during operation to ensure that the cardan joint performs as expected and does not introduce any adverse effects.

It is essential to consult with experienced engineers or professionals specializing in retrofitting and cardan joint applications during the process. They can provide valuable guidance, expertise, and assistance in selecting the appropriate cardan joint, making design modifications, and ensuring a successful retrofit of the existing mechanical system.

cardan shaft

How do you choose the right size cardan joint for your application?

Choosing the right size cardan joint for your application is crucial to ensure optimal performance, reliability, and longevity. Several factors need to be considered when selecting the appropriate size of a cardan joint. Here’s a detailed explanation of the key considerations:

  1. Load Capacity: Determine the maximum load that the cardan joint will need to transmit. Consider both the torque (rotational force) and the axial load (thrust) that will be applied to the joint. The load capacity of the cardan joint should exceed the maximum expected loads in your application to ensure safe and reliable operation.
  2. Operating Speed: Consider the rotational speed at which the cardan joint will be operating. Higher speeds may require specific design considerations, such as balancing, lubrication, and material selection, to ensure smooth operation and avoid premature wear or failure. Verify that the selected cardan joint is rated for the intended operating speed range.
  3. Shaft Diameter: Measure the diameter of the input and output shafts that will be connected by the cardan joint. The cardan joint should have yokes and bearings that match the shaft diameter to ensure a proper fit and reliable power transmission. It is essential to consider both shaft diameters when selecting a cardan joint.
  4. Misalignment Angle: Determine the maximum expected misalignment angle between the input and output shafts. Different types of cardan joints have different capabilities to accommodate misalignment. Consider the angular misalignment and choose a cardan joint that can handle the required range of misalignment angles in your application.
  5. Environmental Factors: Evaluate the operating environment of the cardan joint. Consider factors such as temperature, humidity, dust, chemicals, and vibration. Choose a cardan joint that is suitable for the specific environmental conditions to ensure proper functioning and longevity.
  6. Service Life and Maintenance: Consider the expected service life of the cardan joint and the maintenance requirements. Some applications may require frequent maintenance or periodic lubrication of the joint. Evaluate the ease of maintenance and factor it into your selection process.
  7. Standards and Regulations: Depending on your industry or application, there may be specific standards or regulations that dictate the requirements for cardan joints. Ensure that the selected cardan joint complies with the relevant standards and regulations for your application.

It is advisable to consult with a knowledgeable supplier or engineer specializing in power transmission components to assist you in selecting the right size cardan joint for your specific application. They can consider all the relevant factors and provide guidance to ensure optimal performance and reliability of the cardan joint in your application.

China factory 5-8516X Industrial Cardan Shaft Universal Joint  China factory 5-8516X Industrial Cardan Shaft Universal Joint
editor by CX 2024-01-08