Tag Archives: machine

China wholesaler CZPT Whl Sliding Block Machinery Universal Cardan Joints Used for Straightening Machine Joint

Product Description

  WHL Slide Universal Joint for Straightening Machine (JB/T7846.1-2007)

♦Description

WHL type slide universal joint is mainly used in roller plate straightening machine, with the shaft Angle α≤7°, rotary diameter 22~140mm, nominal torque 31.5-10000 N·m.

♦Basic Parameter and Main Dimension

Note:
N.m= Norminal Torque; d1 L1= Gear seat end; d2 L2= End of straightening machine;
L= Length of installation; kg.m²= Rotational inertia; kg= Mass

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS, WSD, WSP
Cardan Shaft SWC, SWP, SWZ
Tooth Coupling CL, CLZ, GCLD, GIICL
GICL, NGCL, GGCL, GCLK
Disc Coupling JMI, JMIJ, JMII, JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

♦Our Company

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

 

♦Our Services
1.Design Services
Our design team has experience in cardan shaft relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2.Product Services
Raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→ Packing → Shipping

3.Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4.Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5.Quality Control
Every step should be special test by Professional Staff according to the standard of ISO9001 and TS16949.

FAQ
Q 1: Are you trading company or manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2: Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks of PDF or AI format.

Q 3: How long is your delivery time?
Generally it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually we have a very good price principle, when you make the bulk order then cost of sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstance. 

Q 6: What is the MOQ?
A: Usually our MOQ is 1 pcs.

Q 7: Do you have inspection procedures for coupling ?
A: 100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order? 
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A: T/T. 

Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Color: as Your Requirement
Structure: Double
Material: Stainless Steel
Model: Whl Type Universal Joints
Norminal Torque: 31.5-10000n.M
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

cardan shaft

How do you calculate the operating angles of a cardan joint?

The operating angles of a cardan joint can be calculated based on the angular misalignment between the input and output shafts. The operating angles are crucial for determining the joint’s performance and ensuring its proper functioning. Here’s a detailed explanation of how to calculate the operating angles of a cardan joint:

  1. Identify the Shaft Axes: Begin by identifying the axes of the input and output shafts connected by the cardan joint. These axes represent the rotational axes of the shafts.
  2. Measure the Angular Misalignments: Measure the angular misalignments between the shaft axes. The misalignments are typically measured in terms of angles, such as angular displacement in degrees or radians. There are three types of misalignments to consider:
    • Angular Misalignment (α): This refers to the angular difference between the two shaft axes in the horizontal plane (X-Y plane).
    • Parallel Misalignment (β): Parallel misalignment represents the offset or displacement between the two shaft axes in the vertical plane (Z-axis).
    • Axial Misalignment (γ): Axial misalignment refers to the shift or displacement of one shaft along its axis with respect to the other shaft.
  3. Calculate the Operating Angles: Once the misalignments are measured, the operating angles can be calculated using trigonometric functions. The operating angles are:
    • Operating Angle (θ): The operating angle is the total angular misalignment between the input and output shafts. It is calculated as the square root of the sum of the squares of the individual misalignments:

These calculated operating angles provide valuable information about the misalignment and geometry of the cardan joint. They help in selecting the appropriate joint size, determining the joint’s torque capacity, assessing potential operating issues, and ensuring proper installation and alignment of the joint within the system.

It is important to note that these calculations assume small operating angles and neglect any elastic deformation or non-linearities that may occur in the joint. In cases where larger operating angles or more precise calculations are required, advanced engineering techniques or software tools specific to cardan joint analysis may be employed.

cardan shaft

Can cardan joints be used in off-road vehicles and equipment?

Yes, cardan joints can be used in off-road vehicles and equipment, and they are commonly employed in various drivetrain and power transmission applications. Cardan joints offer several characteristics that make them suitable for off-road environments. Here’s a detailed explanation:

1. Misalignment Compensation: Off-road vehicles and equipment often encounter uneven terrain, which can result in misalignments between the drivetrain components. Cardan joints are designed to accommodate misalignments and angular variations, allowing for smooth power transmission even in challenging off-road conditions. They can compensate for misalignments caused by suspension articulation, vehicle flexing, and uneven ground surfaces.

2. High Torque Transmission: Off-road vehicles and equipment typically require the transfer of high torque from the engine to the wheels or other driven components. Cardan joints are capable of efficiently transmitting torque even at significant angles, enabling robust power delivery in off-road applications. They can handle the torque demands associated with climbing steep inclines, traversing obstacles, and powering heavy equipment.

3. Durability and Strength: Off-road environments can be harsh, subjecting drivetrain components to extreme conditions such as impacts, vibrations, and debris. Cardan joints are often constructed using durable materials such as alloy steels or high-strength alloys, which provide the necessary strength and resilience to withstand the rigors of off-road use. They are designed to handle the demanding loads and forces encountered in rough terrains.

4. Articulation and Flexibility: Off-road vehicles and equipment require articulation and flexibility to navigate uneven surfaces and challenging obstacles. Cardan joints offer rotational freedom and allow for angular movement, enabling the drivetrain to adapt to varying terrains and maintain consistent power transmission. Their universal joint design allows for smooth rotation and accommodates the required range of motion.

5. Compact Design: Cardan joints have a relatively compact design, making them suitable for integration into the limited space available in off-road vehicles and equipment. Their compact size allows for efficient packaging within the drivetrain system, maximizing ground clearance, and optimizing vehicle or equipment design.

6. Maintenance and Serviceability: Cardan joints are generally robust and require minimal maintenance. However, regular inspection and lubrication are necessary to ensure optimal performance and longevity. Their design often allows for easy access and replacement if needed, facilitating maintenance and minimizing downtime in off-road applications.

It’s important to note that while cardan joints offer advantages for off-road vehicles and equipment, their performance and suitability depend on specific application requirements, loads, operating conditions, and other factors. Careful consideration should be given to selecting the appropriate cardan joint size, material, and design based on the anticipated demands of the off-road application.

When incorporating cardan joints into off-road vehicles and equipment, it is advisable to consult with engineers or experts specializing in drivetrain systems and off-road vehicle design. They can provide valuable insights and guidance on the selection, integration, and maintenance of cardan joints for specific off-road applications.

cardan shaft

How does a cardan joint accommodate misalignment between shafts?

A cardan joint, also known as a universal joint or U-joint, is designed to accommodate misalignment between shafts. Its unique structure and mechanism allow for flexibility and compensation when there are angular or axial deviations between the input and output shafts. Here’s a detailed explanation of how a cardan joint accommodates misalignment:

The cardan joint consists of two yokes, typically fork-shaped, and a cross-shaped member called the cross or spider. The yokes are attached to the input and output shafts, while the cross sits in the center, connecting the yokes. The cross has four arms, and each arm has a bearing cap that holds a bearing. The bearings allow the cross to rotate within the yokes.

When the input and output shafts are perfectly aligned, the cardan joint operates in a straight configuration, and the cross remains in a centered position. However, when misalignment occurs, such as angular misalignment or axial misalignment, the cardan joint can flex and adjust to accommodate the deviation.

Angular Misalignment: When the input and output shafts are at an angle to each other, the cardan joint can accommodate the angular misalignment. As the input shaft rotates, it causes the yoke attached to it to rotate. This rotation is transmitted to the cross through the bearing cap and bearing. As the cross rotates, it causes the other yoke attached to the output shaft to rotate. The angular misalignment is compensated by the ability of the cross to tilt and follow the changing angles of the shafts. The bearings and bearing caps allow the cross to pivot and adjust its position, ensuring that the rotational motion is smoothly transmitted despite the misalignment.

Axial Misalignment: In cases of axial misalignment, where there is a difference in the axial position of the input and output shafts, the cardan joint can also accommodate the misalignment. The axial misalignment can cause the yokes to be slightly offset along the axis. However, the flexibility of the cardan joint allows the cross to adjust its position and maintain the connection between the yokes. The bearings and bearing caps within the cross allow it to move slightly along the axis, compensating for the axial misalignment and ensuring that the rotational motion can still be transmitted.

By allowing the cross to tilt and adjust its position, the cardan joint effectively accommodates misalignment between shafts. It provides the flexibility needed to transmit rotational motion and torque even when the input and output shafts are not perfectly aligned. The ability of the cardan joint to compensate for misalignment makes it a versatile component in various applications where flexibility and misalignment tolerance are required.

China wholesaler CZPT Whl Sliding Block Machinery Universal Cardan Joints Used for Straightening Machine Joint  China wholesaler CZPT Whl Sliding Block Machinery Universal Cardan Joints Used for Straightening Machine Joint
editor by CX 2024-01-15

China Good quality Made in China Splitting Machine Spare Parts Bearing Precision Coupling Cardan Joint

Product Description

Product Description

 

Name Cardan
Material Steel
Shape Non-standard
Surface Grinding and polishing
Production cycle 20-60days
Length Any
Diameter Any
Tolerance ±0.001
Warranty 1 year
Serve OEM&ODM&Design service

 

Company Profile

HangZhou Xihu (West Lake) Dis. Machinery Manufacture Co., Ltd., located in HangZhou, “China’s ancient copper capital”, is a “national high-tech enterprise”. At the beginning of its establishment, the company adhering to the “to provide clients with high quality products, to provide timely service” concept, adhere to the “everything for the customer, make customer excellent supplier” for the mission.

Certifications

 

Q: Where is your company located ?
A: HangZhou ZheJiang .
Q: How could l get a sample?
A: Before we received the first order, please afford the sample cost and express fee. we will return the sample cost back
to you within your first order.
Q: Sample time?
A: Existing items: within 20-60 days.
Q: Whether you could make our brand on your products?
A: Yes. We can print your Logo on both the products and the packages if you can meet our MOQ.
Q: How to guarantee the quality of your products?
A: 1) stict detection during production. 2) Strict completely inspecion on products before shipment and intact product
packaging ensured.
Q: lf my drawings are safe?
A: Yes ,we can CHINAMFG NDA.
 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Nonstandard
Shaft Hole: 8-24
Structure: Flexible
Material: Stainless Steel
Type: Universal Coupling
Shape: Non-Standard
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

cardan shaft

What are the potential limitations or drawbacks of using cardan joints?

While cardan joints offer numerous advantages in transmitting rotational motion between misaligned shafts, they also have certain limitations and drawbacks to consider. Here are some potential limitations associated with the use of cardan joints:

  • Angular Limitations: Cardan joints have limited angularity or operating angles. They are designed to operate within specific angular ranges, and exceeding these angles can cause accelerated wear, increased vibration, and potential joint failure. Extreme operating angles can lead to binding, decreased efficiency, and reduced power transmission capacity. In applications where large operating angles are required, alternative flexible coupling mechanisms or constant velocity joints may be more suitable.
  • Backlash and Torsional Stiffness: Cardan joints inherently exhibit some degree of backlash, which is the clearance or free play between the mating components. This can result in a slight delay in power transmission and can affect the precision of motion in certain applications. Additionally, cardan joints may have higher torsional stiffness compared to other coupling mechanisms, which can transmit higher vibrations and shocks to the connected components.
  • Maintenance Requirements: Cardan joints require regular maintenance to ensure proper lubrication, alignment, and performance. The lubricant needs to be regularly replenished or replaced, and the joint should be inspected for wear, misalignment, or other issues. Failure to perform adequate maintenance can result in premature wear, reduced efficiency, and potential joint failure. Maintenance procedures may require specialized tools and expertise.
  • Space and Weight: Cardan joints can occupy a significant amount of space due to their design and the need for perpendicular shafts. In applications with limited space constraints, finding suitable locations for cardan joints can be challenging. Additionally, the weight of cardan joints, especially in heavy-duty applications, can add to the overall weight of the system, which may have implications for fuel efficiency, payload capacity, or overall performance.
  • Cost: Cardan joints, particularly high-quality and precision-engineered ones, can be relatively expensive compared to other coupling mechanisms. The complex design, manufacturing tolerances, and specialized materials involved contribute to their higher cost. In cost-sensitive applications, alternative coupling solutions may be considered if the angular limitations and other drawbacks of cardan joints are not critical.
  • High-Speed Limitations: At high rotational speeds, cardan joints can experience increased vibration, imbalance, and potential for fatigue failure. The rotating components of the joint can generate centrifugal forces that impact the balance and stability of the system. In high-speed applications, careful design considerations, including balancing and vibration analysis, may be necessary to mitigate these issues.

It is important to evaluate the specific application requirements, operating conditions, and limitations when considering the use of cardan joints. While they offer versatility and flexibility in many scenarios, alternative coupling mechanisms may be more suitable in cases where the limitations and drawbacks of cardan joints pose significant challenges.

cardan shaft

How do you ensure reliable and consistent performance in a cardan joint?

Ensuring reliable and consistent performance in a cardan joint requires attention to various factors, including proper design, maintenance, and operating practices. By following best practices and considering key considerations, the reliability and performance of a cardan joint can be optimized. Here’s a detailed explanation:

1. Proper Design and Selection: The first step is to ensure the cardan joint is properly designed and selected for the intended application. Consider factors such as load requirements, operating conditions (including speed and temperature), misalignment angles, and torque transmission needs. Choose a cardan joint that is appropriately sized and rated to handle the specific demands of the application.

2. Material Selection: Selecting the appropriate materials for the cardan joint is crucial for long-term performance. Consider factors such as strength, fatigue resistance, and corrosion resistance. The materials should be compatible with the operating environment and any potential exposure to chemicals, moisture, or extreme temperatures.

3. Regular Inspection and Maintenance: Implement a regular inspection and maintenance schedule to identify any signs of wear, damage, or misalignment. This includes checking for excessive play, backlash, or abnormal vibrations. Regularly lubricate the joint as per the manufacturer’s recommendations and ensure that seals are intact to prevent contamination.

4. Alignment and Installation: Proper alignment during installation is critical for optimal performance. Ensure that the joint is aligned correctly with the connected shafts to minimize misalignment and reduce stress on the joint. Precise alignment helps to minimize wear, maximize torque transmission efficiency, and extend the life of the joint.

5. Load Considerations: Be mindful of the loads applied to the cardan joint. Avoid exceeding the recommended load limits and consider factors such as shock loads, torsional forces, and variations in load during operation. Excessive loads can lead to premature wear, fatigue, and failure of the joint.

6. Temperature Management: Maintain suitable operating temperatures for the cardan joint. Excessive heat or extreme temperature fluctuations can affect the performance and longevity of the joint. Ensure proper cooling or lubrication mechanisms are in place if operating conditions generate significant heat.

7. Training and Operator Awareness: Provide proper training to operators and maintenance personnel regarding the cardan joint’s operation, maintenance requirements, and potential failure modes. Encourage regular inspection and reporting of any abnormalities to address issues promptly.

8. Consider Additional Measures: Depending on the application and specific requirements, additional measures can be implemented to enhance performance and reliability. This may include incorporating backlash compensation systems, using precision-aligned cardan joints, or integrating monitoring systems to detect early signs of wear or misalignment.

By considering these factors and implementing best practices, reliable and consistent performance can be achieved in a cardan joint. Regular monitoring, maintenance, and prompt corrective actions are essential to ensure the joint operates optimally and delivers the expected performance throughout its service life.

cardan shaft

How do you maintain and service a cardan joint?

Maintaining and servicing a cardan joint is important to ensure its optimal performance, reliability, and longevity. Regular maintenance helps prevent premature wear, address potential issues, and prolong the life of the joint. Here’s a detailed explanation of the maintenance and servicing procedures for a cardan joint:

  1. Visual Inspection: Regularly inspect the cardan joint for any visible signs of damage, wear, or misalignment. Look for cracks, corrosion, loose or missing fasteners, worn bearings, or any abnormalities in the joint components. If any issues are identified, they should be addressed promptly.
  2. Lubrication: Proper lubrication is essential for the smooth operation of a cardan joint. Follow the manufacturer’s recommendations regarding lubrication type, frequency, quantity, and method. Regularly apply the appropriate lubricant to the designated lubrication points or zerk fittings. Monitor the condition of the lubricant and replenish it as needed to maintain optimal lubrication levels.
  3. Torque Check: Periodically check the torque of the fasteners that secure the cardan joint and yokes. Over time, vibration and operational stresses can cause fasteners to loosen. Ensure that all fasteners are tightened to the manufacturer’s specified torque values. Be cautious not to overtighten, as it can lead to component damage or failure.
  4. Alignment Verification: Verify the alignment of the connected shafts that are linked by the cardan joint. Misalignment can cause increased stress and wear on the joint components. Check for any angular misalignment or axial misalignment and make necessary adjustments to minimize misalignment within acceptable tolerances.
  5. Load and Operating Condition Evaluation: Regularly evaluate the load and operating conditions in which the cardan joint operates. Ensure that the joint is not subjected to excessive loads, speeds, or harsh operating environments beyond its design capabilities. If there are any changes in the operating conditions, consider consulting the manufacturer or an expert to assess the suitability of the cardan joint and make any necessary modifications or replacements.
  6. Vibration Monitoring: Monitor the vibration levels during operation, as excessive vibration can indicate issues with the cardan joint or the overall system. An increase in vibration may suggest misalignment, worn bearings, or other mechanical problems. If significant vibration is detected, further investigation and corrective actions should be undertaken to address the root cause.
  7. Periodic Disassembly and Inspection: Depending on the manufacturer’s recommendations and the operating conditions, periodic disassembly and inspection of the cardan joint may be required. This allows for a more thorough assessment of the joint’s condition, including the bearings, seals, and other internal components. Any worn or damaged parts should be replaced with genuine manufacturer-approved replacements.
  8. Professional Maintenance: In some cases, it may be necessary to engage the services of a professional maintenance technician or a specialized service provider for more comprehensive maintenance or servicing of the cardan joint. They can perform advanced inspections, alignment checks, bearing replacements, or other specialized procedures to ensure the optimal performance of the joint.

It is important to follow the manufacturer’s guidelines and recommendations for maintenance and servicing of the specific cardan joint model. Adhering to proper maintenance practices and promptly addressing any issues that arise will help maximize the service life, reliability, and performance of the cardan joint.

China Good quality Made in China Splitting Machine Spare Parts Bearing Precision Coupling Cardan Joint  China Good quality Made in China Splitting Machine Spare Parts Bearing Precision Coupling Cardan Joint
editor by CX 2023-12-27

China CNC Milling Machine Machining Center Part Axis Shaft Roller Axles with Good quality

Item Description

HangZhou CZPT Precision Industry Co.,Ltd

 

The company has owned IS0 9001 (International High quality Management) program certification, ISO14001 (International Environmental Administration) method certification, IATF16949 (International Automotive Activity Drive) method certification and EN15085-2 (Railway apps-Welding of railway vehicles and factors) system certification. We have an experienced management staff and a team of higher-top quality skills. 

 

Our positive aspects are as beneath.

  1. Core Worth: Integrity + Top quality
  2. Rich Experience: Since the yr of 2001
  3. Technological Engineer: 36 Staffs
  4. High quality Engineer: 18 Staffs
  5. Business Certificate: ISO 9001, ISO14001, ITAF 16949, EN 15085-two
  6. Strong Capacity: Up to 100k pieces for each working day

 

Manufacturing facility Description and Service Articles
Production LINE:  Metallic stamping, Laser cutting, Sheet steel, Welding, Spraying, Electrophoresis, Assembly.
Substance:  Carbon metal, Stainless metal, Aluminum, Copper, Brass, Bronze, Customized.
Procedures:  Blanking, Punching, Bending, Reducing, Milling, Dilling, Tapping, Riveting, Welding, Assembling, Packing.
TOLERANCE:  +/- .01mm
Complete:  Powder, Spraying, Sand Blasting, Electroplating, Electrophoresis, Anodizing, Passivating, Tailored.
Coloration:  Natural, Conversonial, Silver, Gray, Black, White, Red, Blue, Eco-friendly, Yellow, Matte, Shiny, Customized.
Method CERTIFICATION:  ISO 9001, ISO 14001, ITAF 16949, EN 15085-2.
Application:  Automobile, Conversation, Electrical, Electronics, Rail transit, Tools manufacturing etc.
MOQ:  1,000 Pcs ~ 5,000 Pcs
MOULD Expense:  five hundred USD ~ 5,000 USD
Device Price tag:  .05 USD ~ 5.00 USD
PACKING:  Paper Bag, Plastic Bag, PE Bag, Carton Board, Carton Box, Plywood situation, Wood Scenario, Pallet.
MPQ:  50 Pcs ~ two hundred Pcs
Guide TIME:  15 Perform Times ~ 25 Perform Times
TRADE Term:  EXW, FOB, CFR, CIF, DDU, DDP.
PAYMENT Strategy:  T/T, L/C, Western Union, Money Gram, PayPal, Ali Pay out.

 

Workshop Interior Check out

Program Certification

 

Manufacturing Line View 

Metalworking merchandise are really critical part in industrial area, It is extensively accepted for its stable functionality and affordable value.
Especially in the area of Auto, Conversation, Electrical, Electronics, IT, Equipment Production, Rail Transit and Development etc.

We fully commited to offer our customers with outstanding products and cater to their demand solutions with lower charges and extremely efficiency. Remember to truly feel cost-free to contact us, we are seeking forward to our more cooperation. We handle each and every client sincerely and consider each and every task critically.

 

US $1
/ Piece
|
1,000 Pieces

(Min. Order)

###

After-sales Service: Yes
Warranty: 12months
Condition: New
Certification: CE, RoHS, GS, ISO9001
Standard: DIN, ASTM, GOST, GB, JIS, ANSI, BS
Customized: Customized

###

Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Factory Description and Service Content
PRODUCTION LINE:  Metal stamping, Laser cutting, Sheet metal, Welding, Spraying, Electrophoresis, Assembly.
MATERIAL:  Carbon steel, Stainless steel, Aluminum, Copper, Brass, Bronze, Customized.
PROCEDURES:  Blanking, Punching, Bending, Cutting, Milling, Dilling, Tapping, Riveting, Welding, Assembling, Packing.
TOLERANCE:  +/- 0.01mm
FINISH:  Powder, Spraying, Sand Blasting, Electroplating, Electrophoresis, Anodizing, Passivating, Customized.
COLOR:  Natural, Conversonial, Silver, Grey, Black, White, Red, Blue, Green, Yellow, Matte, Glossy, Customized.
SYSTEM CERTIFICATION:  ISO 9001, ISO 14001, ITAF 16949, EN 15085-2.
APPLICATION:  Automobile, Communication, Electrical, Electronics, Rail transit, Equipment manufacturing etc.
MOQ:  1,000 Pcs ~ 5,000 Pcs
MOULD COST:  500 USD ~ 5,000 USD
UNIT PRICE:  0.05 USD ~ 5.00 USD
PACKING:  Paper Bag, Plastic Bag, PE Bag, Carton Board, Carton Box, Plywood case, Wooden Case, Pallet.
MPQ:  50 Pcs ~ 200 Pcs
LEAD TIME:  15 Work Days ~ 25 Work Days
TRADE TERM:  EXW, FOB, CFR, CIF, DDU, DDP.
PAYMENT METHOD:  T/T, L/C, Western Union, Money Gram, PayPal, Ali Pay.
US $1
/ Piece
|
1,000 Pieces

(Min. Order)

###

After-sales Service: Yes
Warranty: 12months
Condition: New
Certification: CE, RoHS, GS, ISO9001
Standard: DIN, ASTM, GOST, GB, JIS, ANSI, BS
Customized: Customized

###

Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Factory Description and Service Content
PRODUCTION LINE:  Metal stamping, Laser cutting, Sheet metal, Welding, Spraying, Electrophoresis, Assembly.
MATERIAL:  Carbon steel, Stainless steel, Aluminum, Copper, Brass, Bronze, Customized.
PROCEDURES:  Blanking, Punching, Bending, Cutting, Milling, Dilling, Tapping, Riveting, Welding, Assembling, Packing.
TOLERANCE:  +/- 0.01mm
FINISH:  Powder, Spraying, Sand Blasting, Electroplating, Electrophoresis, Anodizing, Passivating, Customized.
COLOR:  Natural, Conversonial, Silver, Grey, Black, White, Red, Blue, Green, Yellow, Matte, Glossy, Customized.
SYSTEM CERTIFICATION:  ISO 9001, ISO 14001, ITAF 16949, EN 15085-2.
APPLICATION:  Automobile, Communication, Electrical, Electronics, Rail transit, Equipment manufacturing etc.
MOQ:  1,000 Pcs ~ 5,000 Pcs
MOULD COST:  500 USD ~ 5,000 USD
UNIT PRICE:  0.05 USD ~ 5.00 USD
PACKING:  Paper Bag, Plastic Bag, PE Bag, Carton Board, Carton Box, Plywood case, Wooden Case, Pallet.
MPQ:  50 Pcs ~ 200 Pcs
LEAD TIME:  15 Work Days ~ 25 Work Days
TRADE TERM:  EXW, FOB, CFR, CIF, DDU, DDP.
PAYMENT METHOD:  T/T, L/C, Western Union, Money Gram, PayPal, Ali Pay.

An Axle is a Simple Machine For Amplifying Force

An axle is the central shaft that connects the drive wheels of a vehicle. It transmits power from the engine to the wheels and absorbs braking and acceleration forces. It may also contain bearings. Learn more about the important functions of the axle in your vehicle. Its simple design makes it an efficient machine for amplifying force.
Axles

An axle is a rod or shaft that connects to the drive wheels

An axle is a rod or shaft that is fixed to the drive wheels of a vehicle. It provides support and rotates with the wheels. Generally, a vehicle has two axles. However, larger vehicles can have more. The type of axle used will depend on how much torque and speed the wheels need to travel.
Drive axles are crucial to the operation of a car. They transfer power from the engine to the wheels, so they must be strong and durable. They also need to be able to support the weight of the vehicle and resist accelerated forces. The drive axle is usually connected to a driveshaft, which extends upward into the transmission and connects with the engine.
There are two main types of axles: front wheel drive (FWD) and rear wheel drive (RWD). The former type is common in passenger vehicles, while the latter type is more common for trucks and cars. The rear wheel drive (RWD) axle connects to the drive wheels, while the front-wheel drive (FWD) axle transfers power from the transaxle differential to the wheels.
Modern drive axles consist of short rods with a flexible rubber boot covering the CV joint. The rubber boot helps to prevent dirt and grease from getting into the CV joint. The increased complexity of the drive axle increases the risk that something goes wrong with it. However, this increases the car’s traction, ride quality, and handling.
A car’s axles are designed by engineers to be extremely strong. They must be able to withstand thousands of pounds of weight, while operating under high levels of friction. But no drive axle is invincible; they will break if the vehicle is overloaded or too heavy.
The rear axle is connected to the engine and rotates with the wheels. The front axle helps with steering and absorbs road shocks. Typically, this part is made of carbon steel and nickel steel.

It absorbs braking and acceleration forces

The Axle is an important part of a vehicle’s suspension. It is responsible for absorbing braking and acceleration forces. Axle roll centres are located on the transversal vertical plane, through the center of each wheel. This is the point at which lateral force applied to the sprung mass is transferred to the unsprung mass, a process known as transfer of momentum. This force coupling point is also known as the Neutral Roll Axis.
An axle’s role in a vehicle goes beyond absorbing braking and acceleration forces. It also serves as a weight transfer device, reducing the stress on the joints of a vehicle. Its design has evolved over time to meet a variety of requirements. It must be durable and able to absorb braking and acceleration forces, while providing the right amount of structural support.
A potential diagram can be used to benchmark tyre performance. The data entered can include suspension geometry and load distributions. The lateral force potential of a tyre is calculated for each individual tyre in an axle, and the values obtained for a constant steer angle are also included.
Optimal energy recovery is crucial for absorbing braking forces and meeting the total braking force required for a given deceleration. Figure 11 shows the braking forces for the front and rear axles over a certain range when j/g = m. The thick solid line ab represents this range.
In addition to braking and acceleration forces, an axle’s lateral force capacity is limited by lateral load transfer. If one axle fails to absorb lateral forces, it might break loose and skid before the other. This can lead to understeer and oversteer. This is why it is not a good idea to put unsprung weight on a vehicle’s axle.
Axles

It transmits power from the engine to the wheels

The axle is an integral part of a vehicle’s drive system. It transmits power from the engine to the wheels. Different types of axles have different roles in transmission of power from the engine to the wheels. The drive shaft is the main component of an axle, connecting the engine and the wheels.
A vehicle’s axle transmits power from the engine to the rear wheels. The power is transferred through the gears to move the car forward. The inner wheel of a bicycle pedal powers the back wheel, while the outer wheel moves at a different speed. Similarly, the power from the engine is transmitted to the wheels by a car’s crankshaft and driveshaft.
The type of axle you choose depends on the size of the vehicle and its purpose. Standard axles are suitable for most vehicles, while customized axles are best suited for high-performance vehicles. Customized axles give you more control over the wheel speed and torque. It’s important to know about the types and sizes of axles to choose the right one for your vehicle.
A differential is another vital component of the drivetrain. It allows the power from the engine to reach both wheels, which allows the vehicle to accelerate and decelerate. A differential also compensates for the difference in tyre speeds on curved roads. By using a differential, you can increase the speed of the wheels and improve your car’s handling.
The differential between the front and rear axles is called a bevel ring gear. Its input shaft is supported by a ball race mounted in the axle casing. The other part of the differential is called the input helical gear. The two sun gears are connected by cross-pins.

It is a simple machine for amplifying force

A simple machine is one that increases the output of force without altering the input force. For example, a lever increases force but does not create new energy. Therefore, it is necessary to balance the work input and output. It is important to keep in mind that friction can reduce energy.
Using a simple machine, you can perform various tasks. For example, you can use it to cut and pry apart objects. This type of machine involves a wheel and an axle, which have a smaller radius than the wedge. The force applied by the wheel pushes the two pieces apart.
Another simple machine that amplifies force is a gearbox. The earliest gearboxes were used to lift buckets or weights from wells. The large gear is attached to a smaller one by a hinge. The smaller gear increases the force of the larger one, allowing the small gear to lift much larger loads.
A wheel and axle is a simple machine that uses mechanical advantage to change force. A wheel is a circular disk, and an axle is a rod through the center. The mechanical advantage is a result of the combination of torque and angular momentum to work against the force of gravity. In addition, this machine is closely related to gears.
Simple machines are a great way to compare the magnitude of forces, as they use similar mechanisms. One of the oldest examples of a simple machine is a wheel and axle. A wheel is fixed to an axle, and the axle is fixed to a vertical surface. The force generated by the wheel will be proportional to the distance between the two spools.
Another simple machine that amplifies force is a lever. A lever uses a beam or a rigid rod that can pivot on its fulcrum. It is an effective tool for shifting heavy loads, and also for applying force. It also reduces the friction of a vehicle while preserving its momentum.
China CNC Milling Machine Machining Center Part Axis Shaft Roller Axles     with Good quality China CNC Milling Machine Machining Center Part Axis Shaft Roller Axles     with Good quality
editor by czh 2022-12-14

China 3 Axle for Heavy Machine Transportation Manufacturer Low Bed Semi Trailer axle examples

Product Description

3 Axle for Heavy Machine Transportation Low Bed Semi Trailer

Product Description

Series No

 Name  Unit  Q’ty Notice
1   Frame Dimensions     15250*3000*1780 (1250 the height of the loading area/ Platform )
 (wheelbase = 1360) 
Length of platform is 10.5mmLoading capacity 70Tons
2  Axle  piece 3  14 tons BPW (Wheel track width 2360) 
strengthened model( wheelbase 1360 )
3  Tire  Piece 12  Fengshen 10.00R-20-18
4  Rim  Piece 12   Domestic Zhengxing 7.5-20
5  Leaf-spring  piece 6  Domestic 10 pieces of leaf springs,
Which are underslung. 16thickness 100width
6  Suspension  Set 3  CHHGC REINFORCED TYPE
7  Relay Valve  whole 
vehicle
   WABCO relay valve
8  Landing gear  pair 1  JOST  A400 (linkage)
9  Kingpin 2 PCS 1  Adjustable (JOST) KZ1012
9  Kingpin 3.5 PCS 1  Adjustable (JOST) KZ1412 will be taken away, 
without the fifth wheel.
11  Tie-in PCS 4  WABCO
12  Braking air chamber        2  Double chambers
13 Floor             6 mm checkered                                  
14   Rotary support      Every side can be increased 250mm, 
 so if the rotary supports were open the width will become 3500mm   
15  Ramp    Pair 1  Width 800mm, double springs pattern, which is strengthened. 
As for the length, it depends on its technical specifications.
16  Top Flange thickness and 
Bottom Flange thickness
       20mm, 30MM   width =250mm
   Through beam
/cross members
     12# channel steel
   Side beam      294MMH Pattern STEEL     
   longitudinal beam height      600mm and the web plate thickness is 14mm
17  Front overhang
/ kingpin distance
    500MM
18    Spare tire holder          Will be welded on the gooseneck, and will be hand waving type.
19 color          Orange red          
20  Paint     Antiseawater, 
whole trailer will be waxed in order to get protection from Seawater.       
21 Marks      With CHHGC marque.                        
26  Packaging  Two units should be put as One unit
27 NOTICE:We send you one WABCO control valve, one single air chamber, 
one double air chamber as the service spare parts for free in the LOW BED SEMITRILER
28
Notice(1)
No.2. The bearing height and front overhang/ suspension of the low-bed 
Semitrailer will be designed according to the 6X4 Delong Big Truck.
-2 This configuration excludes ABS

 Certificate


Workshop


Business Partners

FAQ:
Q1. How to ship the vehicles?
A:   By container, bulk ship, RORO.

Q2. Do you have RHD(right hand driving) vehicles?
A:   Yes, noramlly we supply all LHD vehicles, and we have some RHD model vehicles.

Q3. What is your payment term?
A:  We usually accept T/T or L/C depends on the quantity. 
     T/T, deposit in advance, and balance paid before delivery from factory.

Q4. Which model vehicles do you supply?
A:  We supply all kinds of vehicles such as SUV, MPV, Pickup,van,truck, bus etc,.

Q5. What is your terms of delivery?
A:   FOB, CIF.

Q6. How about your delivery time?
A:  Generally, it will take 30 to 60 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.

Q7. Do you test all your goods before delivery?
A:   Yes, we have 100% test before delivery.

Q8: What can you guarantee to your business partner?
A:  Best price with good quality. We guarantee quality and after sale service to satisfy our business partners. 

US $16,000-28,000
/ unit
|
1 unit

(Min. Order)

###

Type: Semi-Trailer
Load Capacity: 50T
Certification: ISO9001, CCC, ISO/TS16949
Wheel Base: 7000-8000mm
Tread: 1820mm
Grade: Heavy Duty

###

Customization:

###

Series No

 Name  Unit  Q’ty Notice
1   Frame Dimensions     15250*3000*1780 (1250 the height of the loading area/ Platform )
 (wheelbase = 1360) 
Length of platform is 10.5mmLoading capacity 70Tons
2  Axle  piece 3  14 tons BPW (Wheel track width 2360) 
strengthened model( wheelbase 1360 )
3  Tire  Piece 12  Fengshen 10.00R-20-18
4  Rim  Piece 12   Domestic Zhengxing 7.5-20
5  Leaf-spring  piece 6  Domestic 10 pieces of leaf springs,
Which are underslung. 16thickness 100width
6  Suspension  Set 3  CHHGC REINFORCED TYPE
7  Relay Valve  whole 
vehicle
   WABCO relay valve
8  Landing gear  pair 1  JOST  A400 (linkage)
9  Kingpin 2 PCS 1  Adjustable (JOST) KZ1012
9  Kingpin 3.5 PCS 1  Adjustable (JOST) KZ1412 will be taken away, 
without the fifth wheel.
11  Tie-in PCS 4  WABCO
12  Braking air chamber        2  Double chambers
13 Floor             6 mm checkered                                  
14   Rotary support      Every side can be increased 250mm, 
 so if the rotary supports were open the width will become 3500mm   
15  Ramp    Pair 1  Width 800mm, double springs pattern, which is strengthened. 
As for the length, it depends on its technical specifications.
16  Top Flange thickness and 
Bottom Flange thickness
       20mm, 30MM   width =250mm
   Through beam
/cross members
     12# channel steel
   Side beam      294MMH Pattern STEEL     
   longitudinal beam height      600mm and the web plate thickness is 14mm
17  Front overhang
/ kingpin distance
    500MM
18    Spare tire holder          Will be welded on the gooseneck, and will be hand waving type.
19 color          Orange red          
20  Paint     Antiseawater, 
whole trailer will be waxed in order to get protection from Seawater.       
21 Marks      With CHHGC marque.                        
26  Packaging  Two units should be put as One unit
27 NOTICE:We send you one WABCO control valve, one single air chamber, 
one double air chamber as the service spare parts for free in the LOW BED SEMITRILER
28
Notice(1)
No.2. The bearing height and front overhang/ suspension of the low-bed 
Semitrailer will be designed according to the 6X4 Delong Big Truck.
-2 This configuration excludes ABS
US $16,000-28,000
/ unit
|
1 unit

(Min. Order)

###

Type: Semi-Trailer
Load Capacity: 50T
Certification: ISO9001, CCC, ISO/TS16949
Wheel Base: 7000-8000mm
Tread: 1820mm
Grade: Heavy Duty

###

Customization:

###

Series No

 Name  Unit  Q’ty Notice
1   Frame Dimensions     15250*3000*1780 (1250 the height of the loading area/ Platform )
 (wheelbase = 1360) 
Length of platform is 10.5mmLoading capacity 70Tons
2  Axle  piece 3  14 tons BPW (Wheel track width 2360) 
strengthened model( wheelbase 1360 )
3  Tire  Piece 12  Fengshen 10.00R-20-18
4  Rim  Piece 12   Domestic Zhengxing 7.5-20
5  Leaf-spring  piece 6  Domestic 10 pieces of leaf springs,
Which are underslung. 16thickness 100width
6  Suspension  Set 3  CHHGC REINFORCED TYPE
7  Relay Valve  whole 
vehicle
   WABCO relay valve
8  Landing gear  pair 1  JOST  A400 (linkage)
9  Kingpin 2 PCS 1  Adjustable (JOST) KZ1012
9  Kingpin 3.5 PCS 1  Adjustable (JOST) KZ1412 will be taken away, 
without the fifth wheel.
11  Tie-in PCS 4  WABCO
12  Braking air chamber        2  Double chambers
13 Floor             6 mm checkered                                  
14   Rotary support      Every side can be increased 250mm, 
 so if the rotary supports were open the width will become 3500mm   
15  Ramp    Pair 1  Width 800mm, double springs pattern, which is strengthened. 
As for the length, it depends on its technical specifications.
16  Top Flange thickness and 
Bottom Flange thickness
       20mm, 30MM   width =250mm
   Through beam
/cross members
     12# channel steel
   Side beam      294MMH Pattern STEEL     
   longitudinal beam height      600mm and the web plate thickness is 14mm
17  Front overhang
/ kingpin distance
    500MM
18    Spare tire holder          Will be welded on the gooseneck, and will be hand waving type.
19 color          Orange red          
20  Paint     Antiseawater, 
whole trailer will be waxed in order to get protection from Seawater.       
21 Marks      With CHHGC marque.                        
26  Packaging  Two units should be put as One unit
27 NOTICE:We send you one WABCO control valve, one single air chamber, 
one double air chamber as the service spare parts for free in the LOW BED SEMITRILER
28
Notice(1)
No.2. The bearing height and front overhang/ suspension of the low-bed 
Semitrailer will be designed according to the 6X4 Delong Big Truck.
-2 This configuration excludes ABS

What Is an Axle?

An axle is the central shaft of a vehicle that rotates a wheel or gear. It may be fixed to the wheels or to the vehicle itself, and can rotate with the wheels and gears. It may include bearings and mounting points. If the axle is fixed to the vehicle, it may have a steering or drive shaft attached.

Rear axle

The rear axle is a crucial part of your vehicle. If it fails to function correctly, it can cause major issues when driving at high speeds. This assembly can be a complicated component, and it is crucial that you find a mechanic who knows how to fix it. Rear axles require periodic gear oil replacement and bearing adjustments.
The rear axle is the final leg of the drivetrain, transferring rotational power from the driveshaft to the rear wheels. While the design of the rear axle varies between vehicles, all axles are designed to follow similar principles. Rear axles may have a single drive shaft or two. The drive shafts are mounted at either end of the axle.
The rear axle ratio is important because it affects how much fuel the truck uses. The lower the ratio, the more fuel-efficient the vehicle is. Higher numbers, like 4:10, are better for towing, but they will decrease fuel economy. When choosing a rear axle ratio, be sure to consider how much weight you’ll be hauling.
The rear axle is the most complicated part of the vehicle. It has many components and may not be easily visible. However, a properly functioning rear axle is essential for maximizing safety and performance. If you have a problem, you should contact a professional for a quick and easy fix. Even minor issues can make a significant difference in how your car or truck functions. A professional will ensure that your vehicle’s rear axle will be up to OEM standards.
Axles

Semi-floating axle

A semi-floating axle is the next step up from a stub axle. Semi-floating axles have a bearing that supports the shaft, which then floats inside the axle casing. These axles are best suited for midsize trucks. They are also lighter than full-floating axles and can be manufactured at a lower cost.
This design is most commonly found on rear-wheel-drive passenger cars and lighter trucks. The semi-floating design also allows for a wider diameter axle shaft, and it can increase axle capacity by increasing the diameter of the axle shaft. It also has a wider offset to accommodate larger tires. It can accommodate any offset, although this is usually only useful in off-road environments.
Semi-floating axles are often made with a tapered end. This helps keep the axel from twisting while providing traction. The rear hub of a semi-floating axle is usually connected to the axel via a big, strong nut. This nut also provides friction on the axel shaft.
A full-floating axle is common in 3/4-ton and 1/2-ton trucks. It is important to note, however, that almost all factory full-floating rear ends use eight-lug wheels. However, this rule is not strictly enforced and some companies, like Czpt, specialize in semi-floating axles and custom axles.
Axles

Drive shaft

A drive shaft is an important part of your vehicle’s drivetrain, which helps to transfer torque from the transmission to the drive wheels. You’ll need to know how it functions in order to properly maintain your car. Fortunately, there are a variety of different parts you can use to upgrade your drive shaft.
In order to improve the performance of your vehicle’s drivetrain, you can replace your existing drive shaft with an upgraded one. These are available in various lengths, so that you can find the right length and fit for your vehicle. Some shafts can even be customized to fit the exact length of your axle.
Generally, short axle shafts are made of solid steel. The longer ones are made of aluminum or carbon fiber. To ensure a smooth and safe ride, they are dynamically balanced to eliminate vibrations. Some models are fitted with giubo joints and universal joints to absorb shock. You can also add flex discs to improve your suspension and dampen the bucking sensation of a drive shaft.
You can tell if your drive shaft needs replacement if you hear a clicking noise while driving. This noise is often audible when the vehicle is turning sharply. You should take your vehicle to a mechanic as soon as you hear this noise, or it could lead to a costly repair. In addition to a clicking noise, your car may also be exhibiting a shuddering or vibrating sensation. If you’re experiencing any of these symptoms, you should take your car in for a checkup by an ASE certified technician. If you ignore these warnings, your car’s drive shaft could separate, causing you a lot of damage.
The drive shaft is attached to the axle flange by a drive shaft bolt. This is an important part of the drivetrain because it’s the only point where the drive shaft will connect to the axle. If the bolt is too long, it could be vulnerable to damage if the washers don’t fit tightly. The drive shaft socket yoke can also be easily damaged when you loosen the bolt.
Axles

U-joint

When you replace a u-joint on an axle, you need to take a few things into consideration. One of these considerations is the type of grease you’re going to use. Some of these greases are better than others, and you should always check for a quality grease before you install a new one. A good grease can help to reduce the friction and improve the temperature resistance of the part.
It’s also important to check the u-joint itself. This is the joint between the axle shaft and the wheel. If it’s not functioning properly, it could cause further problems. You should inspect the u-joint every time you change the oil in your vehicle. You can test its lubrication by pressing on the tire with a pry bar or axle stands. You can also try turning the steering wheel fully to test if the joint is loose.
A u-joint failure can leave your car inoperable, which can make driving a risky proposition. If the drive shaft loosens and falls to the ground, you could lose control of your car and risk being stranded. In some severe cases, the front of the driveshaft can even drop to the ground and lift the rear of the car, pushing the car sideways. It’s vital to check u-joints regularly, as failure of the u-joint can cause costly and frustrating car repairs.
When you notice a bad universal joint, you should consider getting it replaced immediately. The most common symptom of a bad u-joint is a clunking sound during acceleration and deceleration. You may also hear vibrations when the u-joint becomes worn and you drive the car. If you notice these symptoms, contact a qualified technician to perform a proper diagnosis.
China 3 Axle for Heavy Machine Transportation Manufacturer Low Bed Semi Trailer     axle examplesChina 3 Axle for Heavy Machine Transportation Manufacturer Low Bed Semi Trailer     axle examples
editor by czh 2022-12-07

China 4 Axles 80tons for Heavy Duty Machine Cargoslow Bed/Lowboy/Low Loader Semi Trailer axle shaft

Product Description

Product Description

Can be customized according to the needs of various trailers, manufacturers direct sales, big discount

 

Detailed Photos

High strength steel, prefabricated protective mesh

 

Wabco chamber, high end nylon tube, leak proof adapter

Webco relay valve, heavy duty thickening mechanical suspension, special plate spring,

 

Product Parameters

Product name 60/80/100/120ton Low bed semi trailer(Can be customized)  
multi-purpose  Transport containers, loaders, tractors, and high rails for bulk cargo(Can be customized)  
Axle 2/3/4 pieces, 13T FUWA/BPW axle  
Wheelbase Can be customized+1310+1310mm,or other
Tyre 12 pieces, 10.00R20 11.00R20 12.00R20  12R22.5(Can be customized) R
Dimensions(LxWxH) 10000 -17000mm x 3000 x 1750mm
Tare weight 10 tons to 12 tons
Axle spacing 1310mm
Rims 8.5-20, 9.0-20
Suspension System Leaf spring suspension / air suspension
Brake System Dual line pneumatic brake system with WABCO emergency relay valve
Main Beam Height 500mm Q345 carbon steel
Side beam 16mm-25mm channel steel(Material is Q235 carbon steel)
Chassis upper 20mm, lower 25mm. Mid web 12mm
Rear Loading Ramps 2 nos, 720 mm width, spring loaded & manually operated with safety chain
Kingpin 2′ or 3.5′ interchangeable,JOST brand
Landing Gear 28 Tons , Two speed manual operation (Jost or FuhuaCan be customized)
Electrical System 1.Voltage: 24v  2. Receptacle: 7 ways (7 wire harness) German standard
Lights and Reflectors Rear light, rear reflector, turn indicative light, side reflector, fog lamp, number plate light
Painting Shot blast to SA 2.5 Standard prior to application of primer, polyurethane top coat. Total DFT not less than 100μm;Any color will be available
Tool Box One tool box with a set of standard trailer tools
Spare Tyre Carrier One piece or 2 pieces
Packing Polish with wax before shipping

Packaging & Shipping

1.The trailer is waxed before it is packed to prevent seawater from corroding the trailer surface.

2.We will choose the most suitable transportation method for customers and reduce the transportation costs of customers.

Company Profile

ZheJiang CZPT Special Vehicle Co., Ltd. is located in HangZhou City, ZheJiang Province. We operate in good faith and specialize in R & D, mass production, retail sales of semi-trailer and other transportation equipment. With international advanced and first-class integrated production line, special trailer development team and the combination of Chinese and foreign technology, various types of trailers (such as bulk cement tank trailer, retractable semi-trailer, detachable gooseneck trailer, modular hydraulic trailer, etc.) can be customized. Based on the rich traffic advantages and resources in Central China, letway is committed to providing global customers with high-quality and cost-effective transportation equipment.

 

Our Advantages


Price advantage:

We sell in factories without middlemen, so our price will be better than that of trading companies

Quality advantage:
From the moment the customer places an order, we will be equipped with a professional team. Professional personnel are responsible for the design, production, tracking and transportation. We adopt the principle of responsibility system, and the quality can be guaranteed.

Professional advantages:
We have our own R & D team and design team. Our team has received professional training and good education, and is skilled in using CAD, SW and other drawing tools

Service advantages:
The staff will give the most favorable and accurate quotation to the customer within 2 hours according to the customer’s requirements, make the most appropriate purchase scheme for the customer, and formulate the perfect solution according to the customer’s after-sales demand within 10 hours.

 

 

FAQ

1.What is the delivery date?
It usually takes 15 to 25 days of receiving the deposit.

2.Payment and mode of transportation?
We accept both T/T and D/P .
Bulk, rolling, loading, land transportation, I will actively provide customers with cheaper transportation.

3. If Our Vehicle/Trailer Can Couple With Your Tractor Head ?
– 90% Of The Truck In The Market Can Coupling With Our Vehicle, As Howo, Shacman, Beiben, Volve…
– If Other Brand Truck Head, Please Inform Our Sales Manager Before Order Placing.

4.Can you satisfy my special requirement?
Definitely!We can make the trailers or trucks based on your requirement.

After-sales Service: Solve Problems for Customers at Any Time
Type: Semi-Trailer
Load Capacity: 80T
Certification: ECE, GCC, CE, ISO9001, DOT, CCC, ISO/TS16949
Wheel Base: 9000-10000mm
Tread: 2240mm

###

Samples:
US$ 9000/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Product name 60/80/100/120ton Low bed semi trailer(Can be customized)  
multi-purpose  Transport containers, loaders, tractors, and high rails for bulk cargo(Can be customized)  
Axle 2/3/4 pieces, 13T FUWA/BPW axle  
Wheelbase Can be customized+1310+1310mm,or other
Tyre 12 pieces, 10.00R20 11.00R20 12.00R20  12R22.5(Can be customized) R
Dimensions(LxWxH) 10000 -17000mm x 3000 x 1750mm
Tare weight 10 tons to 12 tons
Axle spacing 1310mm
Rims 8.5-20, 9.0-20
Suspension System Leaf spring suspension / air suspension
Brake System Dual line pneumatic brake system with WABCO emergency relay valve
Main Beam Height 500mm Q345 carbon steel
Side beam 16mm-25mm channel steel(Material is Q235 carbon steel)
Chassis upper 20mm, lower 25mm. Mid web 12mm
Rear Loading Ramps 2 nos, 720 mm width, spring loaded & manually operated with safety chain
Kingpin 2′ or 3.5′ interchangeable,JOST brand
Landing Gear 28 Tons , Two speed manual operation (Jost or FuhuaCan be customized)
Electrical System 1.Voltage: 24v  2. Receptacle: 7 ways (7 wire harness) German standard
Lights and Reflectors Rear light, rear reflector, turn indicative light, side reflector, fog lamp, number plate light
Painting Shot blast to SA 2.5 Standard prior to application of primer, polyurethane top coat. Total DFT not less than 100μm;Any color will be available
Tool Box One tool box with a set of standard trailer tools
Spare Tyre Carrier One piece or two pieces
Packing Polish with wax before shipping
After-sales Service: Solve Problems for Customers at Any Time
Type: Semi-Trailer
Load Capacity: 80T
Certification: ECE, GCC, CE, ISO9001, DOT, CCC, ISO/TS16949
Wheel Base: 9000-10000mm
Tread: 2240mm

###

Samples:
US$ 9000/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Product name 60/80/100/120ton Low bed semi trailer(Can be customized)  
multi-purpose  Transport containers, loaders, tractors, and high rails for bulk cargo(Can be customized)  
Axle 2/3/4 pieces, 13T FUWA/BPW axle  
Wheelbase Can be customized+1310+1310mm,or other
Tyre 12 pieces, 10.00R20 11.00R20 12.00R20  12R22.5(Can be customized) R
Dimensions(LxWxH) 10000 -17000mm x 3000 x 1750mm
Tare weight 10 tons to 12 tons
Axle spacing 1310mm
Rims 8.5-20, 9.0-20
Suspension System Leaf spring suspension / air suspension
Brake System Dual line pneumatic brake system with WABCO emergency relay valve
Main Beam Height 500mm Q345 carbon steel
Side beam 16mm-25mm channel steel(Material is Q235 carbon steel)
Chassis upper 20mm, lower 25mm. Mid web 12mm
Rear Loading Ramps 2 nos, 720 mm width, spring loaded & manually operated with safety chain
Kingpin 2′ or 3.5′ interchangeable,JOST brand
Landing Gear 28 Tons , Two speed manual operation (Jost or FuhuaCan be customized)
Electrical System 1.Voltage: 24v  2. Receptacle: 7 ways (7 wire harness) German standard
Lights and Reflectors Rear light, rear reflector, turn indicative light, side reflector, fog lamp, number plate light
Painting Shot blast to SA 2.5 Standard prior to application of primer, polyurethane top coat. Total DFT not less than 100μm;Any color will be available
Tool Box One tool box with a set of standard trailer tools
Spare Tyre Carrier One piece or two pieces
Packing Polish with wax before shipping

Types of Axles

An axle is the central shaft of a rotating wheel or gear. It can be fixed to the wheels or to the vehicle itself. Depending on the design, it may be fixed in different positions and have different types of mounting points. It may also have bearings. Axles come in different types and shapes. Some of them are more functional than others, and they may be semi-floating, tandem-drive, or lift axles.

Customized axles work best for cars

Adding big horsepower to a car can increase its performance, but this addition can also cause problems. It is important to take proper measurements for the rear axle to ensure it is not too long or too short. However, this measurement can become complicated with limited-slip differentials and offset pinions.
If you want to add custom axles to your car, it is important to know the physical properties of the axle and what kind of load it can handle. If you’re only planning to make a minor upgrade, it may be enough to get a standard axle. However, if you’re planning to make any major modifications, a customized axle will be a much better option.
Customized axles can be made of a variety of materials. They can be made of carbon steel or nickel steel. Some are made to float freely and others are made to be rigid. If you’re building a car, you should also consider the type of bearings and kingpins that it will use.
Axles come in a variety of types, based on the amount of force they produce. Some are pre-defined, while others are customized to meet your car’s specifications. The advantages of customizing your axles include improved wheel speed and torque. You can even adjust the angle of the axles for even more performance.
Axles can make or break your car’s performance. Customized axles are made with a proprietary alloy material that increases the torsional strength. Because of this, they are able to withstand a tremendous amount of power. Additionally, they are able to withstand lateral and bending loads.
While customizing your axle is an excellent idea, it is also very expensive. The best way to go about it is to work with a professional. They are able to make the axles you need and they’re usually well-made and made of quality materials. However, you should make sure you check the reviews and ratings of the manufacturer before making a purchase.
If you want to shorten the axle on your car, you should have it machined with new splines. The number of splines on an axle is important because it determines the strength of the axle. A 33-spline axle is more durable than a 28-spline axle, and a 40-spline axle is even stronger.
Axles

Semi-floating axles

Semi-floating rear axles are a common type of axle used in midsize trucks. They utilize a single wheel support bearing and use one axle shaft to transmit rotation to the wheels. A semi-floating axle is typically lubricated. Aftermarket kits are available to make the axle shaft stronger. However, these kits do not upgrade the axle differential assembly. Therefore, axles with weak differential assemblies may not benefit from conversion.
Semi-floating axles feature a “C-Clip” for holding the axle shaft in place in the axle casing. The problem with this design is that the axle shaft is exposed to more wear and tear. In addition, axle shafts with a C-Clip must be surface-hardened in the area where the axle shaft is flexed.
Semi-floating axles differ from full-floating axles in their appearance. A semi-floating axle has a hub that looks like the hub of a 3/4-ton 14-bolt Ford axle, whereas a full-floating axle’s hub looks like that of a 1 ton Ford axle.
Semi-floating axles have a tapered end. This makes them more efficient in carrying weight. In addition, they have a keyed end to prevent the rear hub from slipping around. This ensures the axle remains stable even when the rear wheels are turning. It is also important to note that semi-floating axles can only carry a small amount of weight, while full-floating axles can carry a lot of weight.
Semi-floating axles are lighter than full-float axles, which makes them less expensive to manufacture. Additionally, if one axle fails, the vehicle will continue to operate normally. Aside from this, semi-floating axles also have c-clips, which are the bearings that bear the weight of the vehicle.
A semi-floating axle is also available with an optional 5-lug hub. The axle shaft transmits rotational torque from the differential to the wheel, and the hub rides on tapered roller bearings. A full-floating axle assembly is stronger than a semi-floating axle system. In addition, it is compatible with factory 5-lug hubs.
Semi-floating axles are easier to install than full-floating axles. However, if you want to convert your semi-floating axle to a full-floating axle, you can install an aftermarket kit.
Axles

Tandem-drive axles

A tandem drive axle is a type of axle with two wheels on one side of the vehicle. Compared to a single axle with two wheels, a tandem drive axle is 60 pounds lighter and offers improved performance and durability. This type of axle is designed to optimize fleet uptime by balancing design efficiency and application-specific demands.
The suspension system of a tandem drive axle includes air springs that control the suspension of the lead and trailing axles. The air springs are pneumatically connected to a common reservoir. The springs’ displacements are averaged to provide a controlling input to the air spring pressurization controller.
A tandem drive axle may be used to transport heavier loads. It is important to note that the maximum weight of a tandem drive axle may be different in different states. In general, the federal regulations allow up to 34K pounds per axle, but the state regulations may be different. However, the weight limits of tandem axle groups are significantly lower than for single axles.
A tandem drive axle is a common type of vehicle drive axle. It is characterized by two axles spaced more than 40 inches apart. The distances are measured from the axle centers. A tandem-drive axle may be a drive axle or a steer axle. If the steer axle is overloaded, steering will be more difficult.
A tandem drive axle is a popular choice for commercial trucks. It is durable and can handle heavy loads. It is often used in cement mixing trucks and tanker trucks, where the weight of the load is distributed evenly between the two axles. The combination of the two axles helps a tandem drive truck make a smoother start from a stopped position. Because the weight is distributed across two axles, the torque generated by the engine can be distributed more effectively.
A tandem drive axle is usually paired with two air-lift axles. A tandem drive axle is also used when the weight of a cargo truck cannot be supported by the two air-lift axles. Tandem-drive axles are typically installed at the rear of a truck’s chassis.
Axles

Lift axles

Lift axles are a great way to reduce the workload on your powertrain, while also improving your fuel economy. These axles reduce rolling resistance, thrust, and tandem scrub, and can improve fuel economy by two to five percent. However, you should use lift axles with care, and pay special attention to suspension spacing.
Some lift axles have a steering feature, which allows the driver to control when the axle is raised, which is useful for taking sharp corners. However, some drawbacks to non-steerable lift axles include excessive tire wear. Steerable lift axles can alleviate this problem, but they are generally more expensive.
Another benefit of lift axles is that they increase a vehicle’s weight carrying capacity. This is useful for trucks with large load capacities. Although state laws vary, federal regulations are generally in favor of spreading the weight of a truck’s cargo across several axles. This helps protect large road pavements and bridges.
Lift axles are an important feature of dump trucks and should be considered if you’re considering making a change. However, they can be costly, and it’s important to consider the costs and benefits before deciding on a new configuration. These axles are best used when the load capacity of a truck is more than double what it is capable of carrying.
The developed algorithm has been tested under various scenarios. First, the algorithm accepts the command from the driver to lift axles. However, it ignores the tag axle dropping command if the vehicle is traveling more than 30 kph. Second, the vehicle stops for about 60 seconds. Once loaded, the algorithm drops the axles in order.
Besides enhancing the weight carrying capacity of a truck, lift axles are also used for auxiliary purposes. Most of these axles are used on dump trucks. In addition to the pusher axle, some dump trucks have a tag axle, which increases the distance between the steer axle and rearmost axle. This allows the truck to carry more cargo than the pusher axle.
China 4 Axles 80tons for Heavy Duty Machine Cargoslow Bed/Lowboy/Low Loader Semi Trailer     axle shaftChina 4 Axles 80tons for Heavy Duty Machine Cargoslow Bed/Lowboy/Low Loader Semi Trailer     axle shaft
editor by czh 2022-11-28

China Best Sales OEM/ODM CE Certificate Farm Agriculture Machine Tractor Parts Drive Cardan Propeller Pto Shaft for Wood Chipper near me supplier

Product Description

OEM/ODM Ce Certificate Farm Agriculture Machine Tractor Parts Drive Cardan Propeller Pto Shaft for Wood Chipper 

Power Take Off Shafts for all applications

A power take-off or power takeoff (PTO) is any of several methods for taking power from a power source, such as a running engine, and transmitting it to an application such as an attached implement or separate machines.

Most commonly, it is a splined drive shaft installed on a tractor or truck allowing implements with mating fittings to be powered directly by the engine.

Semi-permanently mounted power take-offs can also be found on industrial and marine engines. These applications typically use a drive shaft and bolted joint to transmit power to a secondary implement or accessory. In the case of a marine application, such shafts may be used to power fire pumps.

We offer high-quality PTO shaft parts and accessories, including clutches, tubes, and yokes for your tractor and implements, including an extensive range of pto driveline. Request our pto shaft products at the best rate possible.

What does a power take off do?

Power take-off (PTO) is a device that transfers an engine’s mechanical power to another piece of equipment. A PTO allows the hosting energy source to transmit power to additional equipment that does not have its own engine or motor. For example, a PTO helps to run a jackhammer using a tractor engine.

What’s the difference between 540 and 1000 PTO?

When a PTO shaft is turning 540, the ratio must be adjusted (geared up or down) to meet the needs of the implement, which is usually higher RPM’s than that. Since 1000 RPM’s is almost double that of 540, there is less “”Gearing Up”” designed in the implement to do the job required.”

If you are looking for a PTO speed reducer visit here 

Function Power transmission                                   
Use Tractors and various farm implements
Place of Origin HangZhou ,ZHangZhoug, China (Mainland)
Brand Name EPT
Yoke Type push pin/quick release/collar/double push pin/bolt pins/split pins 
Processing Of Yoke Forging
Plastic Cover YW;BW;YS;BS
Color Yellow;black
Series T series; L series; S series
Tube Type Trianglar/star/lemon
Processing Of Tube Cold drawn
Spline Type 1 3/8″ Z6; 1 3/8 Z21 ;1 3/4 Z20;1 1/8 Z6; 1 3/4 Z6; 

Related Products

Application:

Company information:

 

How to Select a Worm Shaft and Gear For Your Project

You will learn about axial pitch PX and tooth parameters for a Worm Shaft 20 and Gear 22. Detailed information on these 2 components will help you select a suitable Worm Shaft. Read on to learn more….and get your hands on the most advanced gearbox ever created! Here are some tips for selecting a Worm Shaft and Gear for your project!…and a few things to keep in mind.
worm shaft

Gear 22

The tooth profile of Gear 22 on Worm Shaft 20 differs from that of a conventional gear. This is because the teeth of Gear 22 are concave, allowing for better interaction with the threads of the worm shaft 20. The worm’s lead angle causes the worm to self-lock, preventing reverse motion. However, this self-locking mechanism is not entirely dependable. Worm gears are used in numerous industrial applications, from elevators to fishing reels and automotive power steering.
The new gear is installed on a shaft that is secured in an oil seal. To install a new gear, you first need to remove the old gear. Next, you need to unscrew the 2 bolts that hold the gear onto the shaft. Next, you should remove the bearing carrier from the output shaft. Once the worm gear is removed, you need to unscrew the retaining ring. After that, install the bearing cones and the shaft spacer. Make sure that the shaft is tightened properly, but do not over-tighten the plug.
To prevent premature failures, use the right lubricant for the type of worm gear. A high viscosity oil is required for the sliding action of worm gears. In two-thirds of applications, lubricants were insufficient. If the worm is lightly loaded, a low-viscosity oil may be sufficient. Otherwise, a high-viscosity oil is necessary to keep the worm gears in good condition.
Another option is to vary the number of teeth around the gear 22 to reduce the output shaft’s speed. This can be done by setting a specific ratio (for example, 5 or 10 times the motor’s speed) and modifying the worm’s dedendum accordingly. This process will reduce the output shaft’s speed to the desired level. The worm’s dedendum should be adapted to the desired axial pitch.

Worm Shaft 20

When selecting a worm gear, consider the following things to consider. These are high-performance, low-noise gears. They are durable, low-temperature, and long-lasting. Worm gears are widely used in numerous industries and have numerous benefits. Listed below are just some of their benefits. Read on for more information. Worm gears can be difficult to maintain, but with proper maintenance, they can be very reliable.
The worm shaft is configured to be supported in a frame 24. The size of the frame 24 is determined by the center distance between the worm shaft 20 and the output shaft 16. The worm shaft and gear 22 may not come in contact or interfere with 1 another if they are not configured properly. For these reasons, proper assembly is essential. However, if the worm shaft 20 is not properly installed, the assembly will not function.
Another important consideration is the worm material. Some worm gears have brass wheels, which may cause corrosion in the worm. In addition, sulfur-phosphorous EP gear oil activates on the brass wheel. These materials can cause significant loss of load surface. Worm gears should be installed with high-quality lubricant to prevent these problems. There is also a need to choose a material that is high-viscosity and has low friction.
Speed reducers can include many different worm shafts, and each speed reducer will require different ratios. In this case, the speed reducer manufacturer can provide different worm shafts with different thread patterns. The different thread patterns will correspond to different gear ratios. Regardless of the gear ratio, each worm shaft is manufactured from a blank with the desired thread. It will not be difficult to find 1 that fits your needs.
worm shaft

Gear 22’s axial pitch PX

The axial pitch of a worm gear is calculated by using the nominal center distance and the Addendum Factor, a constant. The Center Distance is the distance from the center of the gear to the worm wheel. The worm wheel pitch is also called the worm pitch. Both the dimension and the pitch diameter are taken into consideration when calculating the axial pitch PX for a Gear 22.
The axial pitch, or lead angle, of a worm gear determines how effective it is. The higher the lead angle, the less efficient the gear. Lead angles are directly related to the worm gear’s load capacity. In particular, the angle of the lead is proportional to the length of the stress area on the worm wheel teeth. A worm gear’s load capacity is directly proportional to the amount of root bending stress introduced by cantilever action. A worm with a lead angle of g is almost identical to a helical gear with a helix angle of 90 deg.
In the present invention, an improved method of manufacturing worm shafts is described. The method entails determining the desired axial pitch PX for each reduction ratio and frame size. The axial pitch is established by a method of manufacturing a worm shaft that has a thread that corresponds to the desired gear ratio. A gear is a rotating assembly of parts that are made up of teeth and a worm.
In addition to the axial pitch, a worm gear’s shaft can also be made from different materials. The material used for the gear’s worms is an important consideration in its selection. Worm gears are usually made of steel, which is stronger and corrosion-resistant than other materials. They also require lubrication and may have ground teeth to reduce friction. In addition, worm gears are often quieter than other gears.

Gear 22’s tooth parameters

A study of Gear 22’s tooth parameters revealed that the worm shaft’s deflection depends on various factors. The parameters of the worm gear were varied to account for the worm gear size, pressure angle, and size factor. In addition, the number of worm threads was changed. These parameters are varied based on the ISO/TS 14521 reference gear. This study validates the developed numerical calculation model using experimental results from Lutz and FEM calculations of worm gear shafts.
Using the results from the Lutz test, we can obtain the deflection of the worm shaft using the calculation method of ISO/TS 14521 and DIN 3996. The calculation of the bending diameter of a worm shaft according to the formulas given in AGMA 6022 and DIN 3996 show a good correlation with test results. However, the calculation of the worm shaft using the root diameter of the worm uses a different parameter to calculate the equivalent bending diameter.
The bending stiffness of a worm shaft is calculated through a finite element model (FEM). Using a FEM simulation, the deflection of a worm shaft can be calculated from its toothing parameters. The deflection can be considered for a complete gearbox system as stiffness of the worm toothing is considered. And finally, based on this study, a correction factor is developed.
For an ideal worm gear, the number of thread starts is proportional to the size of the worm. The worm’s diameter and toothing factor are calculated from Equation 9, which is a formula for the worm gear’s root inertia. The distance between the main axes and the worm shaft is determined by Equation 14.
worm shaft

Gear 22’s deflection

To study the effect of toothing parameters on the deflection of a worm shaft, we used a finite element method. The parameters considered are tooth height, pressure angle, size factor, and number of worm threads. Each of these parameters has a different influence on worm shaft bending. Table 1 shows the parameter variations for a reference gear (Gear 22) and a different toothing model. The worm gear size and number of threads determine the deflection of the worm shaft.
The calculation method of ISO/TS 14521 is based on the boundary conditions of the Lutz test setup. This method calculates the deflection of the worm shaft using the finite element method. The experimentally measured shafts were compared to the simulation results. The test results and the correction factor were compared to verify that the calculated deflection is comparable to the measured deflection.
The FEM analysis indicates the effect of tooth parameters on worm shaft bending. Gear 22’s deflection on Worm Shaft can be explained by the ratio of tooth force to mass. The ratio of worm tooth force to mass determines the torque. The ratio between the 2 parameters is the rotational speed. The ratio of worm gear tooth forces to worm shaft mass determines the deflection of worm gears. The deflection of a worm gear has an impact on worm shaft bending capacity, efficiency, and NVH. The continuous development of power density has been achieved through advancements in bronze materials, lubricants, and manufacturing quality.
The main axes of moment of inertia are indicated with the letters A-N. The three-dimensional graphs are identical for the seven-threaded and one-threaded worms. The diagrams also show the axial profiles of each gear. In addition, the main axes of moment of inertia are indicated by a white cross.

China Best Sales OEM/ODM CE Certificate Farm Agriculture Machine Tractor Parts Drive Cardan Propeller Pto Shaft for Wood Chipper   near me supplier China Best Sales OEM/ODM CE Certificate Farm Agriculture Machine Tractor Parts Drive Cardan Propeller Pto Shaft for Wood Chipper   near me supplier

China factory Exquisite Forging Square Universal Spline Tractor Machine Clutch Spare Parts Durable Pto Cardan Shaft for Cultivators with Great quality

Product Description

Exquisite Forging Square Universal Spline Tractor Machine Clutch Spare Parts Durable Pto Cardan Shaft for Cultivators

Power Take Off Shafts for all applications

A power take-off or power takeoff (PTO) is any of several methods for taking power from a power source, such as a running engine, and transmitting it to an application such as an attached implement or separate machines.

Most commonly, it is a splined drive shaft installed on a tractor or truck allowing implements with mating fittings to be powered directly by the engine.

Semi-permanently mounted power take-offs can also be found on industrial and marine engines. These applications typically use a drive shaft and bolted joint to transmit power to a secondary implement or accessory. In the case of a marine application, such shafts may be used to power fire pumps.

We offer high-quality PTO shaft parts and accessories, including clutches, tubes, and yokes for your tractor and implements, including an extensive range of pto driveline. Request our pto shaft products at the best rate possible.

What does a power take off do?

Power take-off (PTO) is a device that transfers an engine’s mechanical power to another piece of equipment. A PTO allows the hosting energy source to transmit power to additional equipment that does not have its own engine or motor. For example, a PTO helps to run a jackhammer using a tractor engine.

What’s the difference between 540 and 1000 PTO?

When a PTO shaft is turning 540, the ratio must be adjusted (geared up or down) to meet the needs of the implement, which is usually higher RPM’s than that. Since 1000 RPM’s is almost double that of 540, there is less “”Gearing Up”” designed in the implement to do the job required.”

If you are looking for a PTO speed reducer visit here 

Function Power transmission                                   
Use Tractors and various farm implements
Place of Origin HangZhou ,ZHangZhoug, China (Mainland)
Brand Name EPT
Yoke Type push pin/quick release/collar/double push pin/bolt pins/split pins 
Processing Of Yoke Forging
Plastic Cover YW;BW;YS;BS
Color Yellow;black
Series T series; L series; S series
Tube Type Trianglar/star/lemon
Processing Of Tube Cold drawn
Spline Type 1 3/8″ Z6; 1 3/8 Z21 ;1 3/4 Z20;1 1/8 Z6; 1 3/4 Z6; 

Related Products

Application:

Company information:

 

Axle Spindle Types and Features

The axle spindle is an integral part of your vehicle’s suspension. There are several different types and features, including mounting methods, bearings, and functions. Read on for some basic information on axle spindles. The next part of the article will cover how to choose the correct axle spindle for your vehicle. This article will also discuss the different types of spindles available, including the differences between the rear and front bearings.
Driveshaft

Features

The improved axle spindle nut assembly is capable of providing additional performance benefits, including increased tire life and reduced seal failure. Its keyway features and radially inwardly extending teeth allow nut adjustment to be accomplished with precision. The invention further provides a unique, multi-piece locking mechanism that minimizes leakage and torque transfer. Its principles and features are detailed in the appended claims. For example, the improved axle spindle nut assembly is designed for use in vehicles that are equipped with a steering system.
The axle spindle nut assembly includes a nut 252 with threads 256 on its inner periphery. The axle spindle 50 also features threads 198 on its outer periphery. The nut is threaded onto the outboard end of the axle spindle 50 until it contacts the inboard surface of the axle spacer 26. In the assembled state, a bearing spacer 58 is also present on the axle spindle.
The axle spindle nut assembly can reduce axial end play between the wheel end assembly 52 and the axle spindle 50. It can be tightened to an extreme torque level, but if the thread faces separate, it will undercompress the bearing cone and spacer group. To minimize these disadvantages, the axle spindle nut assembly is a critical component of a wheel-end assembly. There are several types of axle spindle nuts.
The third embodiment of the axle spindle nut assembly 300 comprises an inner washer 202, an outer washer 310, and at least 1 screw 320. The axle spindle nut assembly 300 secures and preloads bearing cones 55, 57. Unlike the first embodiment, the axle spindle nut assembly 300 uses the inner washer 202, which is optional in the third embodiment. The inner washer 202 and outer washer 310 are similar to those of the first embodiment.

Functions

An axle spindle is 1 of the most important components of a vehicle’s suspension system. The spindle retains the position of bearings and a spacer in an axle by providing clamp force. The inner nut of an axle spindle should be properly torqued to ensure a secure fit. A spindle nut is also responsible for compressing bearings and spacers. If any of these components are missing, the spindle will not work properly.
An axle spindle is used in rear wheel drive cars. It carries the weight of the vehicle on the axle casing and transfers the torque from the differential to the wheels. The axle spindle and hub are secured on the spindle by large nuts. The axle spindle is a vital component of rear wheel drive vehicles. Hence, it is essential to understand the functions of axle spindle. These components are responsible for the smooth operation of a vehicle’s suspension system.
Axle spindles can be mounted in 3 ways: in the typical axle assembly, the spindles are bolted onto the ends of the tubular axle, and the axle is suspended by springs. Short stub-axle mounting uses a torsion beam that flexes to provide a smooth ride. A second washer is used to prevent excessive rotation of the axle spindle.
Apart from being a crucial component of the suspension system, the spindles of the wheels are responsible for guiding the vehicle in a straight line. They are connected to the steering axis and are used in different types of suspension systems. European cars use a MacPherson Strut suspension system in which the spindle is connected to the arms in the front and rear of the suspension frame. The MacPherson strut allows the shock absorber housing to turn the wheel.
Driveshaft

Methods of mounting

Various methods of mounting axle spindle are available. In general, these methods involve forming a tubular blank of uniform cross section and thickness, and receiving the bearing assembly against it. The spindle is then secured using a collar, which also serves as a bearing stop. In some cases, additional features are used to provide greater security. Some of these features may not be suitable for all applications. But they are generally suitable.
Axle spindle forming is usually done by progressive steps using hollow punches. The metallic body of the punch has an inner work surface, which receives the axle blank. A mandrel is fixed within the work opening of the punch. The punch body’s work surface forges the spindle about the mandrel. The punch has 2 ends, a closed and an open one.
A wheeled vehicle axle assembly (10) includes a cylindrical housing member (12 a) and a plurality of spindle mounting flanges (30) secured on the housing member. The spindles (16) are firmly attached to the housing member by means of coupling members. The coupling members are configured to distribute the bending loads imposed on the spindle by the axle. It is important to note that the coupling members can be either threaded or screwed.
Traditionally, axle spindles were made from tubular blanks of irregular thickness. This method allowed for a gradual reduction in diameter and eliminated the need for extra metal within the spindle. Similarly, axles made by cold forming eliminate the need for additional metal in the spindle. In this way, the overall cost of manufacture is also reduced. The material used for manufacturing axles also determines the size and shape of the final product.
Driveshaft

Bearings

A nut 16 is used to retain the wheel bearings on axle spindle 12. The nut comprises several parts. The first portion includes a plurality of threads and a deformable second portion. The nut may be disposed on the inboard or outboard end of the axle spindle. This type of nut is typically secured to the axle spindle by a retaining nut.
The bearings are installed in the spindle to allow the wheel hub to rotate. While bearings are greased, they can dry out over time. Consequently, you may hear a loud clicking sound when turning your vehicle. Alternatively, you may notice grease on the edges of your tires. Bearing failure can cause severe damage to your axle spindle. If you notice any of these symptoms, you may need to replace the bearings on your axle spindle. Fortunately, you can purchase the necessary bearing parts at O’Reilly Auto Parts.
There are 3 ways to mount an axle spindle. A typical axle assembly has the spindles bolted to the ends of the tubular axle. A torsion beam is also used to mount the spindles on the axle. This torsion beam acts like a spring to help make the ride smooth and bump-free. Lastly, the axle spindle is sometimes mounted as a bolt-on component.

Cost

If your axle spindle has been damaged, you may need to have it replaced. This part of the axle is relatively easy to replace, but you need to know how to do it correctly. To replace your axle spindle, you must first remove the damaged one. To do this, a technician will cut the weld. They will then thread the new 1 into the axle tube and torque it to specification. After that, they will weld the new axle spindle into place.
When you are thinking about the cost of an axle spindle replacement, you must first determine if it is worth it for your vehicle. It is generally a good idea to replace the spindle only if it is causing damage to your vehicle. You can also replace your axle housing if it is deteriorating. If you do not replace the spindle, you can risk damaging the axle housing. To save money, you can consider using a repair kit.
You can also purchase an axle nut socket set. Most wrenches have an adjusting socket for this purpose. The socket set should be suitable for most vehicle types. Axle spindle replacement costs around $500 to $600 before tax. However, you should be aware that these costs vary widely based on the type of vehicle you have. The parts can cost between $430 and $480, and the labor can cost anywhere from $50 to 70.

China factory Exquisite Forging Square Universal Spline Tractor Machine Clutch Spare Parts Durable Pto Cardan Shaft for Cultivators   with Great qualityChina factory Exquisite Forging Square Universal Spline Tractor Machine Clutch Spare Parts Durable Pto Cardan Shaft for Cultivators   with Great quality

China Best Sales Universal Joints Shaft Coupling Motor Disc Coupling Price Machine Shaft Coupler Universal near me manufacturer

Product Description

Coupling,

1. The couplings offer a range of hub and element selection to meet different demands.

2. They can absorb shock and cater for incidental misalignment and damp out small amplitude vibrations.

3. NBR, Urethane, Hytrel elements.

4. Customized requirement is available.

 

Main Products:

1. Timing Belt Pulley (Synchronous Pulley), Timing Bar, Clamping Plate; 

2. Forging, Casting, Stampling Part; 

3. V Belt Pulley and Taper Lock Bush; Sprocket, Idler and Plate Wheel;Spur Gear, Bevel Gear, Rack;  

4. Shaft Locking Device: could be alternative for Ringfeder, Sati, Chiaravalli, Tollok, etc.; 

5. Shaft Coupling: including Miniature couplings, Curved tooth coupling, Chain coupling, HRC coupling, 
    Normex coupling, Type coupling, GE Coupling, torque limiter, Universal Joint;  

6. Shaft Collars: including Setscrew Type, Single Split and Double Splits; 

7. Gear & Rack: Spur gear/rack, bevel gear, helical gear/rack.

8. Other customized Machining Parts according to drawings (OEM) Forging, Casting, Stamping Parts.

PACKING

Packaging
                      
    Packing  

 

We use standard export wooden case, carton and pallet, but we can also pack it as per your special requirements.

OUR COMPANY
 

ZheJiang Mighty Machinery Co., Ltd. specializes in offering best service and the most competitive price for our customer.

After over 10 years’ hard work, MIGHTY’s business has grown rapidly and become an important partner for oversea clients in the industrial field and become a holding company for 3 manufacturing factories.

MIGHTY’s products have obtained reputation of domestic and oversea customers with taking advantage of technology, management, quality and very competitive price.

Your satisfaction is the biggest motivation for our work, choose us to get high quality products and best service.


OUR FACTORY

FAQ

Q: Are you trading company or manufacturer ?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit.To supply customers excellent quality products with good price and punctual delivery time is our responsibility.

 

The Four Basic Components of a Screw Shaft

There are 4 basic components of a screw shaft: the Head, the Thread angle, and the Threaded shank. These components determine the length, shape, and quality of a screw. Understanding how these components work together can make purchasing screws easier. This article will cover these important factors and more. Once you know these, you can select the right type of screw for your project. If you need help choosing the correct type of screw, contact a qualified screw dealer.

Thread angle

The angle of a thread on a screw shaft is the difference between the 2 sides of the thread. Threads that are unified have a 60 degree angle. Screws have 2 parts: a major diameter, also known as the screw’s outside diameter, and a minor diameter, or the screw’s root diameter. A screw or nut has a major diameter and a minor diameter. Each has its own angle, but they all have 1 thing in common – the angle of thread is measured perpendicularly to the screw’s axis.
The pitch of a screw depends on the helix angle of the thread. In a single-start screw, the lead is equal to the pitch, and the thread angle of a multiple-start screw is based on the number of starts. Alternatively, you can use a square-threaded screw. Its square thread minimizes the contact surface between the nut and the screw, which improves efficiency and performance. A square thread requires fewer motors to transfer the same load, making it a good choice for heavy-duty applications.
A screw thread has 4 components. First, there is the pitch. This is the distance between the top and bottom surface of a nut. This is the distance the thread travels in a full revolution of the screw. Next, there is the pitch surface, which is the imaginary cylinder formed by the average of the crest and root height of each tooth. Next, there is the pitch angle, which is the angle between the pitch surface and the gear axis.
screwshaft

Head

There are 3 types of head for screws: flat, round, and hexagonal. They are used in industrial applications and have a flat outer face and a conical interior. Some varieties have a tamper-resistant pin in the head. These are usually used in the fabrication of bicycle parts. Some are lightweight, and can be easily carried from 1 place to another. This article will explain what each type of head is used for, and how to choose the right 1 for your screw.
The major diameter is the largest diameter of the thread. This is the distance between the crest and the root of the thread. The minor diameter is the smaller diameter and is the distance between the major and minor diameters. The minor diameter is half the major diameter. The major diameter is the upper surface of the thread. The minor diameter corresponds to the lower extreme of the thread. The thread angle is proportional to the distance between the major and minor diameters.
Lead screws are a more affordable option. They are easier to manufacture and less expensive than ball screws. They are also more efficient in vertical applications and low-speed operations. Some types of lead screws are also self-locking, and have a high coefficient of friction. Lead screws also have fewer parts. These types of screw shafts are available in various sizes and shapes. If you’re wondering which type of head of screw shaft to buy, this article is for you.

Threaded shank

Wood screws are made up of 2 parts: the head and the shank. The shank is not threaded all the way up. It is only partially threaded and contains the drive. This makes them less likely to overheat. Heads on wood screws include Oval, Round, Hex, Modified Truss, and Flat. Some of these are considered the “top” of the screw.
Screws come in many sizes and thread pitches. An M8 screw has a 1.25-mm thread pitch. The pitch indicates the distance between 2 identical threads. A pitch of 1 is greater than the other. The other is smaller and coarse. In most cases, the pitch of a screw is indicated by the letter M followed by the diameter in millimetres. Unless otherwise stated, the pitch of a screw is greater than its diameter.
Generally, the shank diameter is smaller than the head diameter. A nut with a drilled shank is commonly used. Moreover, a cotter pin nut is similar to a castle nut. Internal threads are usually created using a special tap for very hard metals. This tap must be followed by a regular tap. Slotted machine screws are usually sold packaged with nuts. Lastly, studs are often used in automotive and machine applications.
In general, screws with a metric thread are more difficult to install and remove. Fortunately, there are many different types of screw threads, which make replacing screws a breeze. In addition to these different sizes, many of these screws have safety wire holes to keep them from falling. These are just some of the differences between threaded screw and non-threaded. There are many different types of screw threads, and choosing the right 1 will depend on your needs and your budget.
screwshaft

Point

There are 3 types of screw heads with points: cone, oval, and half-dog. Each point is designed for a particular application, which determines its shape and tip. For screw applications, cone, oval, and half-dog points are common. Full dog points are not common, and they are available in a limited number of sizes and lengths. According to ASTM standards, point penetration contributes as much as 15% of the total holding power of the screw, but a cone-shaped point may be more preferred in some circumstances.
There are several types of set screws, each with its own advantage. Flat-head screws reduce indentation and frequent adjustment. Dog-point screws help maintain a secure grip by securing the collar to the screw shaft. Cup-point set screws, on the other hand, provide a slip-resistant connection. The diameter of a cup-point screw is usually half of its shaft diameter. If the screw is too small, it may slack and cause the screw collar to slip.
The UNF series has a larger area for tensile stress than coarse threads and is less prone to stripping. It’s used for external threads, limited engagement, and thinner walls. When using a UNF, always use a standard tap before a specialized tap. For example, a screw with a UNF point is the same size as a type C screw but with a shorter length.

Spacer

A spacer is an insulating material that sits between 2 parts and centers the shaft of a screw or other fastener. Spacers come in different sizes and shapes. Some of them are made of Teflon, which is thin and has a low coefficient of friction. Other materials used for spacers include steel, which is durable and works well in many applications. Plastic spacers are available in various thicknesses, ranging from 4.6 to 8 mm. They’re suitable for mounting gears and other items that require less contact surface.
These devices are used for precision fastening applications and are essential fastener accessories. They create clearance gaps between the 2 joined surfaces or components and enable the screw or bolt to be torqued correctly. Here’s a quick guide to help you choose the right spacer for the job. There are many different spacers available, and you should never be without one. All you need is a little research and common sense. And once you’re satisfied with your purchase, you can make a more informed decision.
A spacer is a component that allows the components to be spaced appropriately along a screw shaft. This tool is used to keep space between 2 objects, such as the spinning wheel and an adjacent metal structure. It also helps ensure that a competition game piece doesn’t rub against an adjacent metal structure. In addition to its common use, spacers can be used in many different situations. The next time you need a spacer, remember to check that the hole in your screw is threaded.
screwshaft

Nut

A nut is a simple device used to secure a screw shaft. The nut is fixed on each end of the screw shaft and rotates along its length. The nut is rotated by a motor, usually a stepper motor, which uses beam coupling to accommodate misalignments in the high-speed movement of the screw. Nuts are used to secure screw shafts to machined parts, and also to mount bearings on adapter sleeves and withdrawal sleeves.
There are several types of nut for screw shafts. Some have radial anti-backlash properties, which prevent unwanted radial clearances. In addition, they are designed to compensate for thread wear. Several nut styles are available, including anti-backlash radial nuts, which have a spring that pushes down on the nut’s flexible fingers. Axial anti-backlash nuts also provide thread-locking properties.
To install a ball nut, you must first align the tangs of the ball and nut. Then, you must place the adjusting nut on the shaft and tighten it against the spacer and spring washer. Then, you need to lubricate the threads, the ball grooves, and the spring washers. Once you’ve installed the nut, you can now install the ball screw assembly.
A nut for screw shaft can be made with either a ball or a socket. These types differ from hex nuts in that they don’t need end support bearings, and are rigidly mounted at the ends. These screws can also have internal cooling mechanisms to improve rigidity. In this way, they are easier to tension than rotating screws. You can also buy hollow stationary screws for rotator nut assemblies. This type is great for applications requiring high heat and wide temperature changes, but you should be sure to follow the manufacturer’s instructions.

China Best Sales Universal Joints Shaft Coupling Motor Disc Coupling Price Machine Shaft Coupler Universal   near me manufacturer China Best Sales Universal Joints Shaft Coupling Motor Disc Coupling Price Machine Shaft Coupler Universal   near me manufacturer

China Good quality Machinery Universal Joint Machine Shaft Coupler Universal with Great quality

Product Description

 

 

Main Products:

1. Timing Belt Pulley (Synchronous Pulley), Timing Bar, Clamping Plate; 

2. Forging, Casting, Stampling Part; 

3. V Belt Pulley and Taper Lock Bush; Sprocket, Idler and Plate Wheel;Spur Gear, Bevel Gear, Rack;  

4. Shaft Locking Device: could be alternative for Ringfeder, Sati, Chiaravalli, Tollok, etc.; 

5. Shaft Coupling: including Miniature couplings, Curved tooth coupling, Chain coupling, HRC coupling, 
    Normex coupling, Type coupling, GE Coupling, torque limiter, Universal Joint;  

6. Shaft Collars: including Setscrew Type, Single Split and Double Splits; 

7. Gear & Rack: Spur gear/rack, bevel gear, helical gear/rack.

8. Other customized Machining Parts according to drawings (OEM) Forging, Casting, Stamping Parts.

PACKING

Packaging
                      
    Packing  

 

We use standard export wooden case, carton and pallet, but we can also pack it as per your special requirements.

OUR COMPANY
 

ZheJiang Mighty Machinery Co., Ltd. specializes in offering best service and the most competitive price for our customer.

After over 10 years’ hard work, MIGHTY’s business has grown rapidly and become an important partner for oversea clients in the industrial field and become a holding company for 3 manufacturing factories.

MIGHTY’s products have obtained reputation of domestic and oversea customers with taking advantage of technology, management, quality and very competitive price.

Your satisfaction is the biggest motivation for our work, choose us to get high quality products and best service.


OUR FACTORY

FAQ

Q: Are you trading company or manufacturer ?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit.To supply customers excellent quality products with good price and punctual delivery time is our responsibility.

 

What is a drive shaft?

If you notice a clicking noise while driving, it is most likely the driveshaft. An experienced auto mechanic will be able to tell you if the noise is coming from both sides or from 1 side. If it only happens on 1 side, you should check it. If you notice noise on both sides, you should contact a mechanic. In either case, a replacement driveshaft should be easy to find.
air-compressor

The drive shaft is a mechanical part

A driveshaft is a mechanical device that transmits rotation and torque from the engine to the wheels of the vehicle. This component is essential to the operation of any driveline, as the mechanical power from the engine is transmitted to the PTO (power take-off) shaft, which hydraulically transmits that power to connected equipment. Different drive shafts contain different combinations of joints to compensate for changes in shaft length and angle. Some types of drive shafts include connecting shafts, internal constant velocity joints, and external fixed joints. They also contain anti-lock system rings and torsional dampers to prevent overloading the axle or causing the wheels to lock.
Although driveshafts are relatively light, they need to handle a lot of torque. Torque applied to the drive shaft produces torsional and shear stresses. Because they have to withstand torque, these shafts are designed to be lightweight and have little inertia or weight. Therefore, they usually have a joint, coupling or rod between the 2 parts. Components can also be bent to accommodate changes in the distance between them.
The drive shaft can be made from a variety of materials. The most common material for these components is steel, although alloy steels are often used for high-strength applications. Alloy steel, chromium or vanadium are other materials that can be used. The type of material used depends on the application and size of the component. In many cases, metal driveshafts are the most durable and cheapest option. Plastic shafts are used for light duty applications and have different torque levels than metal shafts.

It transfers power from the engine to the wheels

A car’s powertrain consists of an electric motor, transmission, and differential. Each section performs a specific job. In a rear-wheel drive vehicle, the power generated by the engine is transmitted to the rear tires. This arrangement improves braking and handling. The differential controls how much power each wheel receives. The torque of the engine is transferred to the wheels according to its speed.
The transmission transfers power from the engine to the wheels. It is also called “transgender”. Its job is to ensure power is delivered to the wheels. Electric cars cannot drive themselves and require a gearbox to drive forward. It also controls how much power reaches the wheels at any given moment. The transmission is the last part of the power transmission chain. Despite its many names, the transmission is the most complex component of a car’s powertrain.
The driveshaft is a long steel tube that transmits mechanical power from the transmission to the wheels. Cardan joints connect to the drive shaft and provide flexible pivot points. The differential assembly is mounted on the drive shaft, allowing the wheels to turn at different speeds. The differential allows the wheels to turn at different speeds and is very important when cornering. Axles are also important to the performance of the car.

It has a rubber boot that protects it from dust and moisture

To keep this boot in good condition, you should clean it with cold water and a rag. Never place it in the dryer or in direct sunlight. Heat can deteriorate the rubber and cause it to shrink or crack. To prolong the life of your rubber boots, apply rubber conditioner to them regularly. Indigenous peoples in the Amazon region collect latex sap from the bark of rubber trees. Then they put their feet on the fire to solidify the sap.
air-compressor

it has a U-shaped connector

The drive shaft has a U-joint that transfers rotational energy from the engine to the axle. Defective gimbal joints can cause vibrations when the vehicle is in motion. This vibration is often mistaken for a wheel balance problem. Wheel balance problems can cause the vehicle to vibrate while driving, while a U-joint failure can cause the vehicle to vibrate when decelerating and accelerating, and stop when the vehicle is stopped.
The drive shaft is connected to the transmission and differential using a U-joint. It allows for small changes in position between the 2 components. This prevents the differential and transmission from remaining perfectly aligned. The U-joint also allows the drive shaft to be connected unconstrained, allowing the vehicle to move. Its main purpose is to transmit electricity. Of all types of elastic couplings, U-joints are the oldest.
Your vehicle’s U-joints should be inspected at least twice a year, and the joints should be greased. When checking the U-joint, you should hear a dull sound when changing gears. A clicking sound indicates insufficient grease in the bearing. If you hear or feel vibrations when shifting gears, you may need to service the bearings to prolong their life.

it has a slide-in tube

The telescopic design is a modern alternative to traditional driveshaft designs. This innovative design is based on an unconventional design philosophy that combines advances in material science and manufacturing processes. Therefore, they are more efficient and lighter than conventional designs. Slide-in tubes are a simple and efficient design solution for any vehicle application. Here are some of its benefits. Read on to learn why this type of shaft is ideal for many applications.
The telescopic drive shaft is an important part of the traditional automobile transmission system. These driveshafts allow linear motion of the 2 components, transmitting torque and rotation throughout the vehicle’s driveline. They also absorb energy if the vehicle collides. Often referred to as foldable driveshafts, their popularity is directly dependent on the evolution of the automotive industry.
air-compressor

It uses a bearing press to replace worn or damaged U-joints

A bearing press is a device that uses a rotary press mechanism to install or remove worn or damaged U-joints from a drive shaft. With this tool, you can replace worn or damaged U-joints in your car with relative ease. The first step involves placing the drive shaft in the vise. Then, use the 11/16″ socket to press the other cup in far enough to install the clips. If the cups don’t fit, you can use a bearing press to remove them and repeat the process. After removing the U-joint, use a grease nipple Make sure the new grease nipple is installed correctly.
Worn or damaged U-joints are a major source of driveshaft failure. If 1 of them were damaged or damaged, the entire driveshaft could dislocate and the car would lose power. Unless you have a professional mechanic doing the repairs, you will have to replace the entire driveshaft. Fortunately, there are many ways to do this yourself.
If any of these warning signs appear on your vehicle, you should consider replacing the damaged or worn U-joint. Common symptoms of damaged U-joints include rattling or periodic squeaking when moving, rattling when shifting, wobbling when turning, or rusted oil seals. If you notice any of these symptoms, take your vehicle to a qualified mechanic for a full inspection. Neglecting to replace a worn or damaged u-joint on the driveshaft can result in expensive and dangerous repairs and can cause significant damage to your vehicle.

China Good quality Machinery Universal Joint Machine Shaft Coupler Universal   with Great qualityChina Good quality Machinery Universal Joint Machine Shaft Coupler Universal   with Great quality

China best Universal Joints Shaft Coupling Motor Disc Coupling Machine Shaft Coupler near me supplier

Product Description

Coupling,

1. The couplings offer a range of hub and element selection to meet different demands.

2. They can absorb shock and cater for incidental misalignment and damp out small amplitude vibrations.

3. NBR, Urethane, Hytrel elements.

4. Customized requirement is available.

 

Main Products:

1. Timing Belt Pulley (Synchronous Pulley), Timing Bar, Clamping Plate; 

2. Forging, Casting, Stampling Part; 

3. V Belt Pulley and Taper Lock Bush; Sprocket, Idler and Plate Wheel;Spur Gear, Bevel Gear, Rack;  

4. Shaft Locking Device: could be alternative for Ringfeder, Sati, Chiaravalli, Tollok, etc.; 

5. Shaft Coupling: including Miniature couplings, Curved tooth coupling, Chain coupling, HRC coupling, 
    Normex coupling, Type coupling, GE Coupling, torque limiter, Universal Joint;  

6. Shaft Collars: including Setscrew Type, Single Split and Double Splits; 

7. Gear & Rack: Spur gear/rack, bevel gear, helical gear/rack.

8. Other customized Machining Parts according to drawings (OEM) Forging, Casting, Stamping Parts.

PACKING

Packaging
                      
    Packing  

 

We use standard export wooden case, carton and pallet, but we can also pack it as per your special requirements.

OUR COMPANY
 

ZheJiang Mighty Machinery Co., Ltd. specializes in offering best service and the most competitive price for our customer.

After over 10 years’ hard work, MIGHTY’s business has grown rapidly and become an important partner for oversea clients in the industrial field and become a holding company for 3 manufacturing factories.

MIGHTY’s products have obtained reputation of domestic and oversea customers with taking advantage of technology, management, quality and very competitive price.

Your satisfaction is the biggest motivation for our work, choose us to get high quality products and best service.


OUR FACTORY

FAQ

Q: Are you trading company or manufacturer ?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit.To supply customers excellent quality products with good price and punctual delivery time is our responsibility.

 

Screw Shaft Types and Uses

Various uses for the screw shaft are numerous. Its major diameter is the most significant characteristic, while other aspects include material and function are important. Let us explore these topics in more detail. There are many different types of screw shafts, which include bronze, brass, titanium, and stainless steel. Read on to learn about the most common types. Listed below are some of the most common uses for a screw shaft. These include: C-clamps, screw jacks, vises, and more.
screwshaft

Major diameter of a screw shaft

A screw’s major diameter is measured in fractions of an inch. This measurement is commonly found on the screw label. A screw with a major diameter less than 1/4″ is labeled #0 to #14; those with a larger diameter are labeled fractions of an inch in a corresponding decimal scale. The length of a screw, also known as the shaft, is another measure used for the screw.
The major diameter of a screw shaft is the greater of its 2 outer diameters. When determining the major diameter of a screw, use a caliper, micrometer, or steel rule to make an accurate measurement. Generally, the first number in the thread designation refers to the major diameter. Therefore, if a screw has a thread of 1/2-10 Acme, the major diameter of the thread is.500 inches. The major diameter of the screw shaft will be smaller or larger than the original diameter, so it’s a good idea to measure the section of the screw that’s least used.
Another important measurement is the pitch. This measures the distance between 1 thread’s tip and the next thread’s corresponding point. Pitch is an important measurement because it refers to the distance a screw will advance in 1 turn. While lead and pitch are 2 separate concepts, they are often used interchangeably. As such, it’s important to know how to use them properly. This will make it easier to understand how to select the correct screw.
There are 3 different types of threads. The UTS and ISO metric threads are similar, but their common values for Dmaj and Pmaj are different. A screw’s major diameter is the largest diameter, while the minor diameter is the lowest. A nut’s major diameter, or the minor diameter, is also called the nut’s inside diameter. A bolt’s major diameter and minor diameter are measured with go/no-go gauges or by using an optical comparator.
The British Association and American Society of Mechanical Engineers standardized screw threads in the 1840s. A standard named “British Standard Whitworth” became a common standard for screw threads in the United States through the 1860s. In 1864, William Sellers proposed a new standard that simplified the Whitworth thread and had a 55 degree angle at the tip. Both standards were widely accepted. The major diameter of a screw shaft can vary from 1 manufacturer to another, so it’s important to know what size screw you’re looking for.
In addition to the thread angle, a screw’s major diameter determines the features it has and how it should be used. A screw’s point, or “thread”, is usually spiky and used to drill into an object. A flat tipped screw, on the other hand, is flat and requires a pre-drilled hole for installation. Finally, the diameter of a screw bolt is determined by the major and minor diameters.
screwshaft

Material of a screw shaft

A screw shaft is a piece of machine equipment used to move raw materials. The screw shaft typically comprises a raw material w. For a particular screw to function correctly, the raw material must be sized properly. In general, screw shafts should have an axial-direction length L equal to the moving amount k per 1/2 rotation of the screw. The screw shaft must also have a proper contact angle ph1 in order to prevent raw material from penetrating the screw shaft.
The material used for the shaft depends on its application. A screw with a ball bearing will work better with a steel shaft than 1 made of aluminum. Aluminum screw shafts are the most commonly used for this application. Other materials include titanium. Some manufacturers also prefer stainless steel. However, if you want a screw with a more modern appearance, a titanium shaft is the way to go. In addition to that, screws with a chromium finish have better wear resistance.
The material of a screw shaft is important for a variety of applications. It needs to have high precision threads and ridges to perform its function. Manufacturers often use high-precision CNC machines and lathes to create screw shafts. Different screw shafts can have varying sizes and shapes, and each 1 will have different applications. Listed below are the different materials used for screw shafts. If you’re looking for a high-quality screw shaft, you should shop around.
A lead screw has an inverse relationship between contact surface pressure and sliding velocity. For heavier axial loads, a reduced rotation speed is needed. This curve will vary depending on the material used for the screw shaft and its lubrication conditions. Another important factor is end fixity. The material of a screw shaft can be either fixed or free, so make sure to consider this factor when choosing the material of your screw. The latter can also influence the critical speed and rigidity of the screw.
A screw shaft’s major diameter is the distance between the outer edge of the thread and the inner smooth part. Screw shafts are typically between 2 and 16 millimeters in diameter. They feature a cylindrical shape, a pointy tip, and a wider head and drive than the former. There are 2 basic types of screw heads: threaded and non-threaded. These have different properties and purposes.
Lead screws are a cost-effective alternative to ball screws, and are used for low power and light to medium-duty applications. They offer some advantages, but are not recommended for continuous power transmission. But lead screws are often quieter and smaller, which make them useful for many applications. Besides, they are often used in a kinematic pair with a nut object. They are also used to position objects.
screwshaft

Function of a screw shaft

When choosing a screw for a linear motion system, there are many factors that should be considered, such as the position of the actuator and the screw and nut selection. Other considerations include the overall length of travel, the fastest move profile, the duty cycle, and the repeatability of the system. As a result, screw technology plays a critical role in the overall performance of a system. Here are the key factors to consider when choosing a screw.
Screws are designed with an external threading that digs out material from a surface or object. Not all screw shafts have complete threading, however. These are known as partially threaded screws. Fully threaded screws feature complete external threading on the shaft and a pointed tip. In addition to their use as fasteners, they can be used to secure and tighten many different types of objects and appliances.
Another factor to consider is axial force. The higher the force, the bigger the screw needs to be. Moreover, screws are similar to columns that are subject to both tension and compression loads. During the compression load, bowing or deflection is not desirable, so the integrity of the screw is important. So, consider the design considerations of your screw shaft and choose accordingly. You can also increase the torque by using different shaft sizes.
Shaft collars are also an important consideration. These are used to secure and position components on the shaft. They also act as stroke limiters and to retain sprocket hubs, bearings, and shaft protectors. They are available in several different styles. In addition to single and double split shaft collars, they can be threaded or set screw. To ensure that a screw collar will fit tightly to the shaft, the cap must not be overtightened.
Screws can be cylindrical or conical and vary in length and diameter. They feature a thread that mates with a complementary helix in the material being screwed into. A self-tapping screw will create a complementary helix during driving, creating a complementary helix that allows the screw to work with the material. A screw head is also an essential part of a screw, providing gripping power and compression to the screw.
A screw’s pitch and lead are also important parameters to consider. The pitch of the screw is the distance between the crests of the threads, which increases mechanical advantage. If the pitch is too small, vibrations will occur. If the pitch is too small, the screw may cause excessive wear and tear on the machine and void its intended purpose. The screw will be useless if it can’t be adjusted. And if it can’t fit a shaft with the required diameter, then it isn’t a good choice.
Despite being the most common type, there are various types of screws that differ in their functions. For example, a machine screw has a round head, while a truss head has a lower-profile dome. An oval-its point screw is a good choice for situations where the screw needs to be adjusted frequently. Another type is a soft nylon tip, which looks like a Half-dog point. It is used to grip textured or curved surfaces.

China best Universal Joints Shaft Coupling Motor Disc Coupling Machine Shaft Coupler   near me supplier China best Universal Joints Shaft Coupling Motor Disc Coupling Machine Shaft Coupler   near me supplier