Tag Archives: shaft light

China factory Universal Joints of SWC Light Duty Cardan Shaft

Product Description

Who we are?
HangZhou XIHU (WEST LAKE) DIS. CARDANSHAFT CO;LTD has 15 years history.When the general manager Mr.Rony Du graduated from the university,he always concentrated his attention on the research and development,production and sales of the cardan shaft.Mr.Rony Du and his team started from scratch,from 1 lathe and a very small order,step by step to grow up.He often said to his team”We will only do 1 thing well——to make the perfect cardan shaft”.

                                                               General manager  Mr.Rony Du
HangZhou XIHU (WEST LAKE) DIS. CARDANSHAFT CO.,LTD was founded in 2005.The registered capital is 8 million ,covers an area of 15 acres, has 30 existing staff. The company specializing in the production of SWC, SWP cross universal coupling and drum tooth coupling.The company with factory is located in the beautiful coast of Tai Lake –Hudai (HangZhou Economic Development Zone Hudai Industrial Park).
In order to become China’s leading cardan shaft one-stop solution expert supplier .XIHU (WEST LAKE) DIS. CARDANSHAFT independent research and development of SWC light, medium, short, heavy Designs cardan shaft have reached the leading domestic level.Products not only supporting domestic large and medium-sized customers, but also exported to the United States, India, Vietnam, Laos, Ukraine, Russia, Germany, Britain and other countries and areas.In the past 15 years, the company has accumulated a wealth of experience, learn from foreign advanced technology, and to absorb and use the universal axis has been improved several times, so that the structure is maturing, significantly improved performance.
 

                                          XIHU (WEST LAKE) DIS. Office Building  
XIHU (WEST LAKE) DIS. belief: “Continuous innovation, optimize the structure, perseverance” to create a high quality of outstanding cardan shaft manufacturer.We always adhere to the ISO9001 quality control system, from the details to start, standardize the production process, and to achieve processing equipment “specialization, numerical control” rapid increase in product quality.This Not only won the majority of customers reputation, but also access to peer recognition. We continue to strive to pursue: “for customers to create the greatest value, for the staff to build the best platform”, will be able to achieve customer and business mutually beneficial CHINAMFG situation.

                                  Welcome to XIHU (WEST LAKE) DIS. CARDANSHAFT

Why choose us?
First,select raw material carefully
 
  The cross is the core component of cardan shaft,so the selection of material is particularly critical.Raw materials of the cross for light Duty Size and Medium Duty Size,we choose the 20CrMnTi special gear steel bar from SHAGANG GROUP.Being forged in 2500 ton friction press to ensure internal metallurgical structure,inspecting the geometric dimensions of each part to meet the drawing requirements,then transfer to machining,the processes of milling, turning, quenching and grinding.
 
The inspector will screen blank yoke head.The porosity, cracks, slag, etc. do not meet the requirements of the casting foundry are all eliminated,then doing physical and chemical analysis, to see whether the ingredients meet the requirements, unqualified re-elimination.And then transferred to the quenching and tempering heat treatment, once again check the hardness to see if meet the requirements, qualified to be transferred to the machining process. We control from the source of the material to ensure the supply of raw materials qualified rate of 99%.
 
  
 Second,advanced production equipment
 
XIHU (WEST LAKE) DIS. Company introduced four-axis linkage machining center made in ZheJiang , milling the keyway and flange bolt hole of the flange yoke, The once machine-shaping ensures that the symmetry of the keyway and the position of the bolt hole are less than 0.02mm,which greatly improves the installation accuracy of the flange,the 4 axis milling and drilling center holes of the cross are integrated,to ensure that the 4 shaft symmetry and verticality are less than 0.02mm,the process of the journal cross assembly service life can be increased by 30%, and the speed at 1000 rpm above the cardan shaft running smoothly and super life is crucial to the operation.
 
We use CNC machine to lathe flange yoke and welded yoke,CNC machine can not only ensure the accuracy of the flange connection with the mouth, but also improve the flange surface finish.
 
5 CHINAMFG automatic welding machine welding spline sleeve and tube,welded yoke and tube.With the welding CHINAMFG swing mechanism, automatic lifting mechanism, adjustment mechanism and welding CHINAMFG cooling system, welding machine can realize multi ring continuous welding, each coil current and voltage can be preset, arc starting and stopping control PLC procedures, reliable welding quality, the weld bead is smooth and beautiful, to control the welding process with fixed procedures, greatly reducing the uncertainty of human during welding, greatly improve the welding effect.
 
 
High speed cardan shaft needs to do dynamic balance test before leaving the factory.Unbalanced cardan shaft will produce excessive centrifugal force at high speed and reduce the service life of the bearing;the dynamic balance test can eliminate the uneven distribution of the casting weight and the mass distribution of the whole assembly;Through the experiment to achieve the design of the required balance quality, improve the universal shaft service life.In 2008 the company introduced 2 high-precision dynamic balance test bench, the maximum speed can reach 4000 rev / min, the balance of G0.8 accuracy, balance weight 2kg–1000kg.
 
In order to make the paint standardization, in 2009 the company bought 10 CHINAMFG of clean paint room , the surface treatment of cardan shaft is more standardized, paint fastness is more rugged, staff’s working conditions improved, exhaust of harmless treatment.
 

Third,Professional transport packaging
 
 
The packing of the export cardan shaft is all in the same way as the plywood wooden box, and then it is firmly secured with the iron sheet, so as to avoid the damage caused by the complicated situation in the long-distance transportation. Meet the standard requirements of plywood boxes into Europe and other countries, no matter where can successfully reach all the country’s ports.

SWC-I Series-Light-Duty Designs Cardan shaft
Designs

Data and Size of SWC-I Series Universal Joint Couplings
 

Type Desian
Data
Item
SWC-I
   58 
SWC-I
   65
SWC-I
   75
SWC-I
  90
SWC-I
  100
SWC-I
120
SWC-I
150
SWC-I
180
SWC-I
200
SWC-I
225
A L 255 285 335 385 445 500 590 640 775 860
Lv 35 40 40 45 55 80 80 80 100 120
m(kg) 2.2 3.0 5.0 6.6 9.5 17 32 40 76 128
B L 150 175 200 240 260 295 370 430 530 600
m(kg) 1.7 2.4 3.8 5.7 7.7 13.1 23 28 55 98
C L 128 156 180 208 220 252 340 348 440 480
m(kg) 1.3 1.95 3.1 5.0 7.0 12.3 22 30 56 96
  Tn(N·m) 150 200 400 750 1250 2500 4500 8400 16000 22000
  Tf(N·m) 75 100 200 375 630 1250 2250 4200 8000 11000
  β(°) 35 35 35 35 35 35 35 25 25 25
  D 52 63 72 92 100 112 142 154 187 204
  Df 58 65 75 90 100 120 150 180 200 225
  D1 47 52 62 74.5 84 101.5 130 155.5 170 196
  D2(H9) 30 35 42 47 57 75 90 110 125 140
  D3 38 38 4 50 60 70 89 102 114 140
  Lm 32 39 45 52 55 63 85 87 110 120
  k 3.5 4.5 5.5 6.0 8.0 8.0 10.0 12.0 14.0 15.0
  t 1.5 1.7 2.0 2.5 2.5 2.5 3.0 4.0 4.0 5.0
  n 4 4 6 4 6 8 8 8 8 8
  d 5.1 6.5 6.5 8.5 8.5 10.5 13 15 17 17
  MI(kg) 0.14 0.16 0.38 0.38 0.53 0.53 0.87 0.87 1.65 2.14
Flange bolt size M5 M6 M6 M8 M8 M10 M12 M14 M16 M16
Tightening torque(N·m) 7 13 13 32 32 64 110 180 270 270

1. Notations: 
L=Standard length, or compressed length for designs with length compensation; 
LV=Length compensation; 
M=Weight; 
Tn=Nominal torque(Yield torque 50% over Tn); 
TF=Fatigue torque, I. E. Permissible torque as determined according to the fatigue strength
Under reversing loads; 
β=Maximum deflection angle; 
MI=weight per 100mm tube
2. Millimeters are used as measurement units except where noted; 
3. Please consult us for customizations regarding length, length compensation and
Flange connections. 
 

Brief Introduction

Processing flow

Applications
  
                                                                                                                                                                 

Quality Control                                                                                                                                                                                                

       
 

      

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Alloy Steel
Load: Drive Shaft
Stiffness & Flexibility: Stiffness / Rigid Axle
Journal Diameter Dimensional Accuracy: IT6-IT9
Axis Shape: Straight Shaft
Shaft Shape: Hollow Axis
Customization:
Available

|

Customized Request

cardan shaft

Can cardan joints be used in heavy-duty machinery and equipment?

Yes, cardan joints can be used in heavy-duty machinery and equipment. Cardan joints, also known as universal joints, are versatile mechanical couplings that transmit torque between misaligned shafts. They offer several advantages that make them suitable for heavy-duty applications. Here’s a detailed explanation of why cardan joints can be used in heavy-duty machinery and equipment:

  • Torque Transmission: Cardan joints are capable of transmitting high levels of torque between misaligned shafts. This makes them well-suited for heavy-duty applications that require the transfer of substantial power. The design of the joint allows for smooth torque transmission, even in cases where the shafts are not perfectly aligned.
  • Misalignment Compensation: In heavy-duty machinery and equipment, misalignments between shafts can occur due to factors such as thermal expansion, vibration, or structural flexing. Cardan joints excel at compensating for such misalignments. Their flexible design accommodates angular, parallel, and axial misalignments, allowing for reliable operation in challenging industrial environments.
  • Durability and Strength: Heavy-duty machinery and equipment often operate under demanding conditions, subjecting components to high loads and harsh environments. Cardan joints are typically constructed from durable materials such as alloy steels, which provide excellent strength and resistance to fatigue and wear. This durability enables them to withstand the heavy loads and prolonged operation associated with heavy-duty applications.
  • Compact Design: Cardan joints have a compact design, which is advantageous in heavy-duty machinery and equipment where space constraints may be present. Their compactness allows for efficient installation and integration within the system, making them suitable for applications where minimizing size and weight is important.
  • Versatility: Cardan joints are available in various sizes and configurations to accommodate different heavy-duty applications. They can be customized to meet specific torque and speed requirements, making them versatile for use in a wide range of machinery and equipment, including industrial machinery, construction equipment, agricultural machinery, and more.

While cardan joints are generally suitable for heavy-duty applications, it is important to consider certain factors to ensure optimal performance. These factors include proper selection of the joint size and type based on the application requirements, adherence to specified torque and speed limits, regular maintenance to prevent wear and ensure proper lubrication, and consideration of any environmental factors that may affect the joint’s performance.

In summary, cardan joints can indeed be used in heavy-duty machinery and equipment due to their excellent torque transmission capabilities, ability to compensate for misalignments, durability, compact design, and versatility. By considering the specific requirements of the application and following appropriate maintenance practices, cardan joints can provide reliable and efficient operation in heavy-duty industrial settings.

cardan shaft

How do you ensure reliable and consistent performance in a cardan joint?

Ensuring reliable and consistent performance in a cardan joint requires attention to various factors, including proper design, maintenance, and operating practices. By following best practices and considering key considerations, the reliability and performance of a cardan joint can be optimized. Here’s a detailed explanation:

1. Proper Design and Selection: The first step is to ensure the cardan joint is properly designed and selected for the intended application. Consider factors such as load requirements, operating conditions (including speed and temperature), misalignment angles, and torque transmission needs. Choose a cardan joint that is appropriately sized and rated to handle the specific demands of the application.

2. Material Selection: Selecting the appropriate materials for the cardan joint is crucial for long-term performance. Consider factors such as strength, fatigue resistance, and corrosion resistance. The materials should be compatible with the operating environment and any potential exposure to chemicals, moisture, or extreme temperatures.

3. Regular Inspection and Maintenance: Implement a regular inspection and maintenance schedule to identify any signs of wear, damage, or misalignment. This includes checking for excessive play, backlash, or abnormal vibrations. Regularly lubricate the joint as per the manufacturer’s recommendations and ensure that seals are intact to prevent contamination.

4. Alignment and Installation: Proper alignment during installation is critical for optimal performance. Ensure that the joint is aligned correctly with the connected shafts to minimize misalignment and reduce stress on the joint. Precise alignment helps to minimize wear, maximize torque transmission efficiency, and extend the life of the joint.

5. Load Considerations: Be mindful of the loads applied to the cardan joint. Avoid exceeding the recommended load limits and consider factors such as shock loads, torsional forces, and variations in load during operation. Excessive loads can lead to premature wear, fatigue, and failure of the joint.

6. Temperature Management: Maintain suitable operating temperatures for the cardan joint. Excessive heat or extreme temperature fluctuations can affect the performance and longevity of the joint. Ensure proper cooling or lubrication mechanisms are in place if operating conditions generate significant heat.

7. Training and Operator Awareness: Provide proper training to operators and maintenance personnel regarding the cardan joint’s operation, maintenance requirements, and potential failure modes. Encourage regular inspection and reporting of any abnormalities to address issues promptly.

8. Consider Additional Measures: Depending on the application and specific requirements, additional measures can be implemented to enhance performance and reliability. This may include incorporating backlash compensation systems, using precision-aligned cardan joints, or integrating monitoring systems to detect early signs of wear or misalignment.

By considering these factors and implementing best practices, reliable and consistent performance can be achieved in a cardan joint. Regular monitoring, maintenance, and prompt corrective actions are essential to ensure the joint operates optimally and delivers the expected performance throughout its service life.

cardan shaft

Can you provide examples of vehicles that use cardan joints?

Cardan joints, also known as universal joints, are commonly used in various vehicles to transmit rotational motion between two shafts that are not in perfect alignment. Here are some examples of vehicles that utilize cardan joints:

  • Automobiles: Cardan joints are widely employed in automobiles for various applications. They are commonly found in the drivetrain system, connecting the transmission output shaft to the driveshaft. This allows the rotational power to be transferred from the engine to the wheels, enabling the vehicle to move. Cardan joints are also used in the steering system to transmit motion from the steering column to the steering rack or gearbox.
  • Trucks and Commercial Vehicles: Cardan joints are extensively used in trucks and commercial vehicles for their drivetrain and suspension systems. They are often employed in the propeller shafts to transmit power from the transmission or transfer case to the rear axle or multiple axles in the case of multi-axle trucks. Cardan joints are also utilized in the steering linkage system of heavy-duty trucks and buses.
  • Off-Road and 4×4 Vehicles: Off-road vehicles and 4×4 vehicles heavily rely on cardan joints for their drivetrain systems. These joints are used in the transfer case to transmit power to both the front and rear differentials, enabling selectable four-wheel drive or all-wheel drive capabilities. Cardan joints provide flexibility to accommodate the articulation and suspension movement required in off-road conditions.
  • Agricultural Machinery: Cardan joints are commonly employed in agricultural machinery, such as tractors and combines. They are utilized in the power take-off (PTO) shafts to transfer rotational power from the engine to various implements and attachments, such as mowers, balers, or harvesters. Cardan joints allow for the smooth transfer of power while accommodating the movement and positioning of the implements.
  • Railway Locomotives and Rolling Stock: Cardan joints are utilized in the drivetrain systems of railway locomotives and rolling stock. They are used in the propeller shafts to transmit power from the engine or motor to the wheels. Cardan joints allow for the required flexibility and compensation of misalignment between the various components of the drivetrain system.
  • Industrial Machinery and Equipment: Cardan joints find applications in various industrial machinery and equipment. They are used in industrial drive systems, such as conveyors, pumps, generators, and heavy-duty machinery. Cardan joints enable the transmission of rotational power between different components or sections of the machinery while accommodating misalignment and angular variations.

These are just a few examples of vehicles and applications where cardan joints are commonly used. The versatility, flexibility, and reliability of cardan joints make them suitable for a wide range of vehicles and machinery that require the transmission of rotational motion between non-aligned shafts.

China factory Universal Joints of SWC Light Duty Cardan Shaft  China factory Universal Joints of SWC Light Duty Cardan Shaft
editor by CX 2024-05-16

China factory SWC Light Duty Size Cardan Shaft/Universal Shaft/Propeller Shaft near me manufacturer

Product Description

SWC-I Series-Light-Duty Designs Cardan shaft
Designs

Data and Size of SWC-I Series Universal Joint Couplings
 

Type Desian
Data
Item
SWC-I
   58 
SWC-I
   65
SWC-I
   75
SWC-I
  90
SWC-I
  100
SWC-I
120
SWC-I
150
SWC-I
180
SWC-I
200
SWC-I
225
A L 255 285 335 385 445 500 590 640 775 860
Lv 35 40 40 45 55 80 80 80 100 120
m(kg) 2.2 3.0 5.0 6.6 9.5 17 32 40 76 128
B L 150 175 200 240 260 295 370 430 530 600
m(kg) 1.7 2.4 3.8 5.7 7.7 13.1 23 28 55 98
C L 128 156 180 208 220 252 340 348 440 480
m(kg) 1.3 1.95 3.1 5.0 7.0 12.3 22 30 56 96
  Tn(N·m) 150 200 400 750 1250 2500 4500 8400 16000 22000
  Tf(N·m) 75 100 200 375 630 1250 2250 4200 8000 11000
  β(°) 35 35 35 35 35 35 35 25 25 25
  D 52 63 72 92 100 112 142 154 187 204
  Df 58 65 75 90 100 120 150 180 200 225
  D1 47 52 62 74.5 84 101.5 130 155.5 170 196
  D2(H9) 30 35 42 47 57 75 90 110 125 140
  D3 38 38 4 50 60 70 89 102 114 140
  Lm 32 39 45 52 55 63 85 87 110 120
  k 3.5 4.5 5.5 6.0 8.0 8.0 10.0 12.0 14.0 15.0
  t 1.5 1.7 2.0 2.5 2.5 2.5 3.0 4.0 4.0 5.0
  n 4 4 6 4 6 8 8 8 8 8
  d 5.1 6.5 6.5 8.5 8.5 10.5 13 15 17 17
  MI(kg) 0.14 0.16 0.38 0.38 0.53 0.53 0.87 0.87 1.65 2.14
Flange bolt size M5 M6 M6 M8 M8 M10 M12 M14 M16 M16
Tightening torque(N·m) 7 13 13 32 32 64 110 180 270 270

1. Notations: 
L=Standard length, or compressed length for designs with length compensation; 
LV=Length compensation; 
M=Weight; 
Tn=Nominal torque(Yield torque 50% over Tn); 
TF=Fatigue torque, I. E. Permissible torque as determined according to the fatigue strength
Under reversing loads; 
β=Maximum deflection angle; 
MI=weight per 100mm tube
2. Millimeters are used as measurement units except where noted; 
3. Please consult us for customizations regarding length, length compensation and
Flange connections. 

How to Choose the Right Worm Shaft

You might be curious to know how to choose the right Worm Shaft. In this article, you will learn about worm modules with the same pitch diameter, Double-thread worm gears, and Self-locking worm drive. Once you have chosen the proper Worm Shaft, you will find it easier to use the equipment in your home. There are many advantages to selecting the right Worm Shaft. Read on to learn more.
worm shaft

Concave shape

The concave shape of a worm’s shaft is an important characteristic for the design of a worm gearing. Worm gearings can be found in a wide range of shapes, and the basic profile parameters are available in professional and firm literature. These parameters are used in geometry calculations, and a selection of the right worm gearing for a particular application can be based on these requirements.
The thread profile of a worm is defined by the tangent to the axis of its main cylinder. The teeth are shaped in a straight line with a slightly concave shape along the sides. It resembles a helical gear, and the profile of the worm itself is straight. This type of gearing is often used when the number of teeth is greater than a certain limit.
The geometry of a worm gear depends on the type and manufacturer. In the earliest days, worms were made similar to simple screw threads, and could be chased on a lathe. During this time, the worm was often made with straight-sided tools to produce threads in the acme plane. Later, grinding techniques improved the thread finish and reduced distortions resulting from hardening.
When a worm gearing has multiple teeth, the pitch angle is a key parameter. A greater pitch angle increases efficiency. If you want to increase the pitch angle without increasing the number of teeth, you can replace a worm pair with a different number of thread starts. The helix angle must increase while the center distance remains constant. A higher pitch angle, however, is almost never used for power transmissions.
The minimum number of gear teeth depends on the angle of pressure at zero gearing correction. The diameter of the worm is d1, and is based on a known module value, mx or mn. Generally, larger values of m are assigned to larger modules. And a smaller number of teeth is called a low pitch angle. In case of a low pitch angle, spiral gearing is used. The pitch angle of the worm gear is smaller than 10 degrees.
worm shaft

Multiple-thread worms

Multi-thread worms can be divided into sets of one, two, or 4 threads. The ratio is determined by the number of threads on each set and the number of teeth on the apparatus. The most common worm thread counts are 1,2,4, and 6. To find out how many threads you have, count the start and end of each thread and divide by two. Using this method, you will get the correct thread count every time.
The tangent plane of a worm’s pitch profile changes as the worm moves lengthwise along the thread. The lead angle is greatest at the throat, and decreases on both sides. The curvature radius r” varies proportionally with the worm’s radius, or pitch angle at the considered point. Hence, the worm leads angle, r, is increased with decreased inclination and decreases with increasing inclination.
Multi-thread worms are characterized by a constant leverage between the gear surface and the worm threads. The ratio of worm-tooth surfaces to the worm’s length varies, which enables the wormgear to be adjusted in the same direction. To optimize the gear contact between the worm and gear, the tangent relationship between the 2 surfaces is optimal.
The efficiency of worm gear drives is largely dependent on the helix angle of the worm. Multiple thread worms can improve the efficiency of the worm gear drive by as much as 25 to 50% compared to single-thread worms. Worm gears are made of bronze, which reduces friction and heat on the worm’s teeth. A specialized machine can cut the worm gears for maximum efficiency.

Double-thread worm gears

In many different applications, worm gears are used to drive a worm wheel. These gears are unique in that the worm cannot be reversed by the power applied to the worm wheel. Because of their self-locking properties, they can be used to prevent reversing motion, although this is not a dependable function. Applications for worm gears include hoisting equipment, elevators, chain blocks, fishing reels, and automotive power steering. Because of their compact size, these gears are often used in applications with limited space.
Worm sets typically exhibit more wear than other types of gears, and this means that they require more limited contact patterns in new parts. Worm wheel teeth are concave, making it difficult to measure tooth thickness with pins, balls, and gear tooth calipers. To measure tooth thickness, however, you can measure backlash, a measurement of the spacing between teeth in a gear. Backlash can vary from 1 worm gear to another, so it is important to check the backlash at several points. If the backlash is different in 2 places, this indicates that the teeth may have different spacing.
Single-thread worm gears provide high speed reduction but lower efficiency. A multi-thread worm gear can provide high efficiency and high speed, but this comes with a trade-off in terms of horsepower. However, there are many other applications for worm gears. In addition to heavy-duty applications, they are often used in light-duty gearboxes for a variety of functions. When used in conjunction with double-thread worms, they allow for a substantial speed reduction in 1 step.
Stainless-steel worm gears can be used in damp environments. The worm gear is not susceptible to rust and is ideal for wet and damp environments. The worm wheel’s smooth surfaces make cleaning them easy. However, they do require lubricants. The most common lubricant for worm gears is mineral oil. This lubricant is designed to protect the worm drive.
worm shaft

Self-locking worm drive

A self-locking worm drive prevents the platform from moving backward when the motor stops. A dynamic self-locking worm drive is also possible but does not include a holding brake. This type of self-locking worm drive is not susceptible to vibrations, but may rattle if released. In addition, it may require an additional brake to keep the platform from moving. A positive brake may be necessary for safety.
A self-locking worm drive does not allow for the interchangeability of the driven and driving gears. This is unlike spur gear trains that allow both to interchange positions. In a self-locking worm drive, the driving gear is always engaged and the driven gear remains stationary. The drive mechanism locks automatically when the worm is operated in the wrong manner. Several sources of information on self-locking worm gears include the Machinery’s Handbook.
A self-locking worm drive is not difficult to build and has a great mechanical advantage. In fact, the output of a self-locking worm drive cannot be backdriven by the input shaft. DIYers can build a self-locking worm drive by modifying threaded rods and off-the-shelf gears. However, it is easier to make a ratchet and pawl mechanism, and is significantly less expensive. However, it is important to understand that you can only drive 1 worm at a time.
Another advantage of a self-locking worm drive is the fact that it is not possible to interchange the input and output shafts. This is a major benefit of using such a mechanism, as you can achieve high gear reduction without increasing the size of the gear box. If you’re thinking about buying a self-locking worm gear for a specific application, consider the following tips to make the right choice.
An enveloping worm gear set is best for applications requiring high accuracy and efficiency, and minimum backlash. Its teeth are shaped differently, and the worm’s threads are modified to increase surface contact. They are more expensive to manufacture than their single-start counterparts, but this type is best for applications where accuracy is crucial. The worm drive is also a great option for heavy trucks because of their large size and high-torque capacity.

China factory SWC Light Duty Size Cardan Shaft/Universal Shaft/Propeller Shaft   near me manufacturer China factory SWC Light Duty Size Cardan Shaft/Universal Shaft/Propeller Shaft   near me manufacturer