China Custom Cardan Shaft Universal Joint for Agricultural Tractor Pto

Product Description

 Cardan Shaft Universal Joint for Agricultural Tractor pto

Product Description

The cross joint is a widely utilized component in shafts that are responsible for transmitting rotary motion. It comprises a pair of hinges positioned in close proximity to each other, oriented at a precise 90° angle, and interconnected by means of a cross shaft. As a reputable manufacturer specializing in universal joints, we take pride in offering top-quality u-joints specifically designed for agricultural machinery. We extend a warm invitation to all customers to reach out to us and collaborate in establishing a mutually beneficial partnership.
Product Parameters:
Product Name: Economical universal joint cross bearing Joint Spider Kit
Keywords: Drive Shaft, Universal Joint Cardan Shaft, Propeller Shaft 


Here is our advantages when compare to similar products from China:

1.Forged yokes make PTO shafts strong enough for usage and working;
2.Internal sizes standard to confirm installation smooth;
3.CE and ISO certificates to guarantee to quality of our goods;
4.Strong and professional package to confirm the good situation when you receive the goods.


Product Specifications



Packaging & Shipping


Company Profile

NingBo Hanon Technology Co.,ltd is a modern enterprise specilizing in the development,production,sales and services of Agricultural Parts like PTO shaft and Gearboxes. We adhere to the principle of ” High Quality, Customers’Satisfaction”, using advanced technology and equipments to ensure all the technical standards of transmission .We follow the principle of people first , trying our best to set up a pleasant surroundings and platform of performance for each employee. So everyone can be self-consciously active to join Hanon Machinery.



When we quote for you,we will confirm with you the way of transaction,FOB,CIFetc.<br> For mass production goods, you need to pay 30% deposit before producing and70% balance against copy of documents.The most common way is by T/T.  


Usually we will ship the goods to you by sea.



  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Cross Joint
Usage: Agricultural Products Processing, Farmland Infrastructure, Tillage, Harvester, Planting and Fertilization, Grain Threshing, Cleaning and Drying, Pto Shaft
Material: 20crmn /20crmnti
Power Source: Pto Dirven Shaft
Weight: 1.1-2.4kg
After-sales Service: Online Support
US$ 20/Piece
1 Piece(Min.Order)

Request Sample



Customized Request

cardan shaft

How do you calculate the operating angles of a cardan joint?

The operating angles of a cardan joint can be calculated based on the angular misalignment between the input and output shafts. The operating angles are crucial for determining the joint’s performance and ensuring its proper functioning. Here’s a detailed explanation of how to calculate the operating angles of a cardan joint:

  1. Identify the Shaft Axes: Begin by identifying the axes of the input and output shafts connected by the cardan joint. These axes represent the rotational axes of the shafts.
  2. Measure the Angular Misalignments: Measure the angular misalignments between the shaft axes. The misalignments are typically measured in terms of angles, such as angular displacement in degrees or radians. There are three types of misalignments to consider:
    • Angular Misalignment (α): This refers to the angular difference between the two shaft axes in the horizontal plane (X-Y plane).
    • Parallel Misalignment (β): Parallel misalignment represents the offset or displacement between the two shaft axes in the vertical plane (Z-axis).
    • Axial Misalignment (γ): Axial misalignment refers to the shift or displacement of one shaft along its axis with respect to the other shaft.
  3. Calculate the Operating Angles: Once the misalignments are measured, the operating angles can be calculated using trigonometric functions. The operating angles are:
    • Operating Angle (θ): The operating angle is the total angular misalignment between the input and output shafts. It is calculated as the square root of the sum of the squares of the individual misalignments:

These calculated operating angles provide valuable information about the misalignment and geometry of the cardan joint. They help in selecting the appropriate joint size, determining the joint’s torque capacity, assessing potential operating issues, and ensuring proper installation and alignment of the joint within the system.

It is important to note that these calculations assume small operating angles and neglect any elastic deformation or non-linearities that may occur in the joint. In cases where larger operating angles or more precise calculations are required, advanced engineering techniques or software tools specific to cardan joint analysis may be employed.

cardan shaft

How do you retrofit an existing mechanical system with a cardan joint?

When retrofitting an existing mechanical system with a cardan joint, careful planning and consideration of various factors are necessary to ensure a successful integration. The retrofitting process involves modifying the system to accommodate the cardan joint’s requirements for torque transmission and misalignment compensation. Here’s a detailed explanation of how to retrofit an existing mechanical system with a cardan joint:

  1. Evaluate the Existing System: Begin by thoroughly evaluating the existing mechanical system to understand its design, components, and operational requirements. Identify the areas where a cardan joint can be integrated effectively and assess the feasibility of retrofitting.
  2. Identify the Integration Points: Determine the specific locations within the system where the cardan joint will be installed. This could include areas where torque transmission or misalignment compensation is required, such as connections between shafts, pulleys, or other rotating components.
  3. Measurements and Compatibility: Take accurate measurements of the existing components and spaces where the cardan joint will be installed. Ensure that the dimensions and specifications of the cardan joint are compatible with the available space and the system’s requirements. Consider factors such as shaft sizes, torque ratings, misalignment angles, and operating conditions.
  4. Design Modifications: Based on the evaluation and measurements, make necessary design modifications to accommodate the cardan joint. This may involve modifying shaft ends, adding or removing components, or adjusting mounting positions. Ensure that the modifications do not compromise the structural integrity or functionality of the system.
  5. Installation and Alignment: Install the cardan joint at the identified integration points according to the manufacturer’s guidelines and engineering best practices. Pay attention to proper alignment, ensuring that the joint aligns with the shafts and other connected components. Precise alignment is crucial for efficient torque transmission and to prevent excessive wear or failure.
  6. Secure Mounting: Properly secure the cardan joint to the system, ensuring that it is firmly and securely mounted. Use appropriate fasteners, couplings, or brackets to hold the joint in place and prevent any movement or vibration that could affect its performance.
  7. Lubrication and Maintenance: Follow the manufacturer’s recommendations for lubrication and maintenance of the cardan joint. Proper lubrication helps reduce friction, wear, and heat generation, ensuring smooth operation and longevity of the joint. Establish a maintenance schedule to regularly inspect and maintain the retrofit components to prevent any potential issues.
  8. Testing and Validation: After the retrofitting is complete, perform thorough testing to validate the functionality and performance of the retrofitted system. Test for torque transmission, misalignment compensation, and overall system operation. Monitor the system during operation to ensure that the cardan joint performs as expected and does not introduce any adverse effects.

It is essential to consult with experienced engineers or professionals specializing in retrofitting and cardan joint applications during the process. They can provide valuable guidance, expertise, and assistance in selecting the appropriate cardan joint, making design modifications, and ensuring a successful retrofit of the existing mechanical system.

cardan shaft

How is a cardan joint different from other types of universal joints?

A cardan joint, also known as a universal joint or U-joint, is a specific type of universal joint design. While there are different variations of universal joints, the cardan joint has distinct characteristics that set it apart from other types. Here’s a detailed explanation of how a cardan joint differs from other universal joints:

1. Design and Structure: The cardan joint consists of two yokes and a cross-shaped member called the cross or spider. The yokes are typically fork-shaped and attached to the shafts, while the cross sits in the center, connecting the yokes. In contrast, other types of universal joints, such as the constant-velocity (CV) joint or Rzeppa joint, have different designs and structures. CV joints often use a combination of bearings and balls to transmit motion and maintain constant velocity, making them suitable for applications requiring smooth rotation without speed fluctuations.

2. Misalignment Compensation: One of the primary functions of a cardan joint is to accommodate misalignment between shafts. It can handle angular misalignment, axial misalignment, or a combination of both. The design of the cardan joint allows for the tilting of the cross as the input and output shafts rotate at different speeds. This tilting action compensates for misalignment and allows the joint to transmit motion. Other types of universal joints, such as the Oldham coupling or Hooke’s joint, have different mechanisms for compensating misalignment. For example, the Oldham coupling uses sliding slots and intermediate disks to accommodate misalignment, while Hooke’s joint uses a combination of rotating links and flexible connections.

3. Operating Range: Cardan joints are commonly used in applications where a wide range of operating angles is required. They can effectively transmit motion and torque at various angles, making them suitable for applications with non-collinear shafts. Other types of universal joints may have specific limitations or operating ranges. For instance, some types of CV joints are designed for constant velocity applications and are optimized for specific operating angles or speed ranges.

4. Applications: Cardan joints find applications in various industries, including automotive, industrial machinery, aerospace, and more. They are commonly used in drivetrain systems, power transmission systems, and applications that require flexibility, misalignment compensation, and reliable motion transmission. Other types of universal joints have their own specific applications. For example, CV joints are commonly used in automotive applications, particularly in front-wheel drive systems, where they provide smooth and constant power transmission while accommodating suspension movements.

5. Limitations: While cardan joints offer flexibility and misalignment compensation, they also have certain limitations. At extreme operating angles, cardan joints can introduce non-uniform motion, increased vibration, backlash, and potential loss of efficiency. Other types of universal joints may have their own limitations and considerations depending on their specific design and application requirements.

In summary, a cardan joint, or universal joint, is a specific type of universal joint design that can accommodate misalignment between shafts and transmit motion at various angles. Its structure, misalignment compensation mechanism, operating range, and applications differentiate it from other types of universal joints. Understanding these distinctions is crucial when selecting the appropriate joint for a specific application.

China Custom Cardan Shaft Universal Joint for Agricultural Tractor Pto  China Custom Cardan Shaft Universal Joint for Agricultural Tractor Pto
editor by CX 2023-12-29