China Standard Cardan Joint 5-160X Universal Joint 1410 Series for Diesel

Product Description

Cardan joint 5-160X Universal Joint 1410 Series for Diesel

 

Type Universal Joint
Brand TFN
Model 52.1*133mm
Place of Origin ZheJiang ,China
Precision Rating P0 p1 P4 P5
Seals type open
Material C45 carbon steel,40Cr steel,20CrMnTi
Appication Tractor
Size 52.1*133mm
Lubration oil grease
package Single Box
Vibration V1 V2 V3
Service OEM Customized Services
Single package size 38*35*25
single gross weight 1.0kg

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Multiple
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

cardan shaft

How do you calculate the torque capacity of a cardan joint?

Calculating the torque capacity of a cardan joint involves considering various factors such as the joint’s design, material properties, and operating conditions. The torque capacity determines the maximum amount of torque that the joint can transmit without failure. Here’s a detailed explanation of how to calculate the torque capacity of a cardan joint:

  1. Gather Design Information: Start by gathering the necessary design information about the cardan joint, including its dimensions, material properties, and geometry. This information typically includes the outer diameter, inner diameter, length, and material strength properties.
  2. Calculate Cross-Sectional Area: Use the outer and inner diameters of the joint to calculate its cross-sectional area. The cross-sectional area is required to determine the stress distribution and calculate the torque capacity. The formula to calculate the cross-sectional area of a solid shaft is:
  3. Area = π * (Outer Diameter^2 - Inner Diameter^2) / 4

  4. Consider Material Properties: The material properties of the cardan joint, such as its yield strength or ultimate tensile strength, are essential for calculating the torque capacity. These properties determine the maximum stress that the joint can withstand before failure.
  5. Calculate Maximum Shear Stress: Using the torque applied and the cross-sectional area, the maximum shear stress on the joint can be calculated. The torque applied to the joint is the driving force that needs to be transmitted. The formula to calculate the maximum shear stress is:
  6. Shear Stress = Torque / (Area * 0.5 * Joint Length)

  7. Compare Shear Stress to Material Strength: Compare the calculated maximum shear stress to the material’s yield strength or ultimate tensile strength. Ensure that the shear stress is below the allowable stress to prevent the joint from exceeding its capacity. The allowable stress is typically a fraction of the material’s yield strength or ultimate tensile strength, depending on the safety factor used.

It is important to note that the above calculation provides an approximate estimation of the torque capacity. The actual torque capacity of a cardan joint can be influenced by additional factors, such as the joint’s geometry, loading conditions, operating temperature, and dynamic effects. Consulting the manufacturer’s specifications, engineering standards, or conducting extensive testing is recommended for precise torque capacity determination.

Additionally, it is crucial to consider other factors such as misalignment compensation, fatigue resistance, and service life requirements when selecting a cardan joint for a specific application. These factors may influence the overall performance and reliability of the joint beyond its torque capacity.

cardan shaft

How do you properly maintain and lubricate a cardan joint?

Proper maintenance and lubrication are essential for ensuring the optimal performance, longevity, and reliability of a cardan joint. Regular maintenance helps prevent premature wear, reduce friction, and minimize the risk of component failure. Here’s a detailed explanation of how to properly maintain and lubricate a cardan joint:

  1. Refer to Manufacturer’s Guidelines: Consult the manufacturer’s guidelines and documentation specific to the cardan joint being used. The manufacturer provides valuable information regarding recommended maintenance intervals, lubrication procedures, and compatible lubricants.
  2. Cleanliness: Before lubricating a cardan joint, ensure that the joint and its surrounding area are clean and free from dirt, debris, or contaminants. Use appropriate cleaning methods, such as wiping or brushing, to remove any buildup that could hinder proper lubrication.
  3. Lubrication Points: Identify the lubrication points on the cardan joint. These are typically located at the bearings or bushings where the joint pivots. Refer to the manufacturer’s documentation to determine the specific lubrication points and their recommended lubrication intervals.
  4. Selection of Lubricant: Select a lubricant that is recommended by the manufacturer and suitable for the operating conditions of the cardan joint. Consider factors such as temperature, load, speed, and environmental conditions when choosing the lubricant. Commonly used lubricants for cardan joints include grease or oil with appropriate viscosity and additives.
  5. Applying Grease: If using grease, apply a sufficient amount to the lubrication points. Use a grease gun or other suitable lubrication equipment to deliver the grease accurately. Ensure that the grease reaches the bearings or bushings, allowing it to coat the surfaces evenly.
  6. Applying Oil: If using oil, carefully apply a few drops to each lubrication point. Use a precision oiler or other suitable dispensing method to avoid over-lubrication. The oil should be applied in a controlled manner to prevent excess oil from dripping or spreading to unwanted areas.
  7. Distribution and Spread: After applying the lubricant, operate the cardan joint through its full range of motion several times. This helps distribute the lubricant evenly and ensures proper coverage of the joint’s surfaces. The motion of the joint helps the lubricant penetrate and adhere to the bearing surfaces, reducing friction and wear.
  8. Excess Lubricant: Remove any excess lubricant that may have accumulated around the lubrication points or other areas of the joint. Excess lubricant can attract dirt, debris, or contaminants, which can contribute to accelerated wear or hinder the joint’s operation.
  9. Regular Inspection: Implement a regular inspection schedule for the cardan joint. Periodically check the lubrication points for signs of excessive wear, contamination, or insufficient lubrication. Inspect for leaks, damaged seals, or any other issues that could affect the joint’s performance. Address any problems promptly to prevent further damage or failure.
  10. Maintenance Records: Maintain proper documentation of the maintenance activities performed on the cardan joint. This includes the dates of lubrication, the type of lubricant used, and any observations or issues noted during inspections. Keeping records helps track maintenance history and facilitates timely maintenance planning and troubleshooting.

It’s important to note that the specific maintenance and lubrication requirements may vary depending on the type, design, and application of the cardan joint. Therefore, always refer to the manufacturer’s guidelines and recommendations for the particular cardan joint being used, as they provide the most accurate and relevant information for proper maintenance and lubrication.

cardan shaft

Can you provide examples of vehicles that use cardan joints?

Cardan joints, also known as universal joints, are commonly used in various vehicles to transmit rotational motion between two shafts that are not in perfect alignment. Here are some examples of vehicles that utilize cardan joints:

  • Automobiles: Cardan joints are widely employed in automobiles for various applications. They are commonly found in the drivetrain system, connecting the transmission output shaft to the driveshaft. This allows the rotational power to be transferred from the engine to the wheels, enabling the vehicle to move. Cardan joints are also used in the steering system to transmit motion from the steering column to the steering rack or gearbox.
  • Trucks and Commercial Vehicles: Cardan joints are extensively used in trucks and commercial vehicles for their drivetrain and suspension systems. They are often employed in the propeller shafts to transmit power from the transmission or transfer case to the rear axle or multiple axles in the case of multi-axle trucks. Cardan joints are also utilized in the steering linkage system of heavy-duty trucks and buses.
  • Off-Road and 4×4 Vehicles: Off-road vehicles and 4×4 vehicles heavily rely on cardan joints for their drivetrain systems. These joints are used in the transfer case to transmit power to both the front and rear differentials, enabling selectable four-wheel drive or all-wheel drive capabilities. Cardan joints provide flexibility to accommodate the articulation and suspension movement required in off-road conditions.
  • Agricultural Machinery: Cardan joints are commonly employed in agricultural machinery, such as tractors and combines. They are utilized in the power take-off (PTO) shafts to transfer rotational power from the engine to various implements and attachments, such as mowers, balers, or harvesters. Cardan joints allow for the smooth transfer of power while accommodating the movement and positioning of the implements.
  • Railway Locomotives and Rolling Stock: Cardan joints are utilized in the drivetrain systems of railway locomotives and rolling stock. They are used in the propeller shafts to transmit power from the engine or motor to the wheels. Cardan joints allow for the required flexibility and compensation of misalignment between the various components of the drivetrain system.
  • Industrial Machinery and Equipment: Cardan joints find applications in various industrial machinery and equipment. They are used in industrial drive systems, such as conveyors, pumps, generators, and heavy-duty machinery. Cardan joints enable the transmission of rotational power between different components or sections of the machinery while accommodating misalignment and angular variations.

These are just a few examples of vehicles and applications where cardan joints are commonly used. The versatility, flexibility, and reliability of cardan joints make them suitable for a wide range of vehicles and machinery that require the transmission of rotational motion between non-aligned shafts.

China Standard Cardan Joint 5-160X Universal Joint 1410 Series for Diesel  China Standard Cardan Joint 5-160X Universal Joint 1410 Series for Diesel
editor by CX 2024-05-10