Tag Archives: machinery used

China wholesaler CZPT Whl Sliding Block Machinery Universal Cardan Joints Used for Straightening Machine Joint

Product Description

  WHL Slide Universal Joint for Straightening Machine (JB/T7846.1-2007)

♦Description

WHL type slide universal joint is mainly used in roller plate straightening machine, with the shaft Angle α≤7°, rotary diameter 22~140mm, nominal torque 31.5-10000 N·m.

♦Basic Parameter and Main Dimension

Note:
N.m= Norminal Torque; d1 L1= Gear seat end; d2 L2= End of straightening machine;
L= Length of installation; kg.m²= Rotational inertia; kg= Mass

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS, WSD, WSP
Cardan Shaft SWC, SWP, SWZ
Tooth Coupling CL, CLZ, GCLD, GIICL
GICL, NGCL, GGCL, GCLK
Disc Coupling JMI, JMIJ, JMII, JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

♦Our Company

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

 

♦Our Services
1.Design Services
Our design team has experience in cardan shaft relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2.Product Services
Raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→ Packing → Shipping

3.Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4.Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5.Quality Control
Every step should be special test by Professional Staff according to the standard of ISO9001 and TS16949.

FAQ
Q 1: Are you trading company or manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2: Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks of PDF or AI format.

Q 3: How long is your delivery time?
Generally it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually we have a very good price principle, when you make the bulk order then cost of sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstance. 

Q 6: What is the MOQ?
A: Usually our MOQ is 1 pcs.

Q 7: Do you have inspection procedures for coupling ?
A: 100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order? 
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A: T/T. 

Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Color: as Your Requirement
Structure: Double
Material: Stainless Steel
Model: Whl Type Universal Joints
Norminal Torque: 31.5-10000n.M
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

cardan shaft

How do you calculate the operating angles of a cardan joint?

The operating angles of a cardan joint can be calculated based on the angular misalignment between the input and output shafts. The operating angles are crucial for determining the joint’s performance and ensuring its proper functioning. Here’s a detailed explanation of how to calculate the operating angles of a cardan joint:

  1. Identify the Shaft Axes: Begin by identifying the axes of the input and output shafts connected by the cardan joint. These axes represent the rotational axes of the shafts.
  2. Measure the Angular Misalignments: Measure the angular misalignments between the shaft axes. The misalignments are typically measured in terms of angles, such as angular displacement in degrees or radians. There are three types of misalignments to consider:
    • Angular Misalignment (α): This refers to the angular difference between the two shaft axes in the horizontal plane (X-Y plane).
    • Parallel Misalignment (β): Parallel misalignment represents the offset or displacement between the two shaft axes in the vertical plane (Z-axis).
    • Axial Misalignment (γ): Axial misalignment refers to the shift or displacement of one shaft along its axis with respect to the other shaft.
  3. Calculate the Operating Angles: Once the misalignments are measured, the operating angles can be calculated using trigonometric functions. The operating angles are:
    • Operating Angle (θ): The operating angle is the total angular misalignment between the input and output shafts. It is calculated as the square root of the sum of the squares of the individual misalignments:

These calculated operating angles provide valuable information about the misalignment and geometry of the cardan joint. They help in selecting the appropriate joint size, determining the joint’s torque capacity, assessing potential operating issues, and ensuring proper installation and alignment of the joint within the system.

It is important to note that these calculations assume small operating angles and neglect any elastic deformation or non-linearities that may occur in the joint. In cases where larger operating angles or more precise calculations are required, advanced engineering techniques or software tools specific to cardan joint analysis may be employed.

cardan shaft

Can cardan joints be used in off-road vehicles and equipment?

Yes, cardan joints can be used in off-road vehicles and equipment, and they are commonly employed in various drivetrain and power transmission applications. Cardan joints offer several characteristics that make them suitable for off-road environments. Here’s a detailed explanation:

1. Misalignment Compensation: Off-road vehicles and equipment often encounter uneven terrain, which can result in misalignments between the drivetrain components. Cardan joints are designed to accommodate misalignments and angular variations, allowing for smooth power transmission even in challenging off-road conditions. They can compensate for misalignments caused by suspension articulation, vehicle flexing, and uneven ground surfaces.

2. High Torque Transmission: Off-road vehicles and equipment typically require the transfer of high torque from the engine to the wheels or other driven components. Cardan joints are capable of efficiently transmitting torque even at significant angles, enabling robust power delivery in off-road applications. They can handle the torque demands associated with climbing steep inclines, traversing obstacles, and powering heavy equipment.

3. Durability and Strength: Off-road environments can be harsh, subjecting drivetrain components to extreme conditions such as impacts, vibrations, and debris. Cardan joints are often constructed using durable materials such as alloy steels or high-strength alloys, which provide the necessary strength and resilience to withstand the rigors of off-road use. They are designed to handle the demanding loads and forces encountered in rough terrains.

4. Articulation and Flexibility: Off-road vehicles and equipment require articulation and flexibility to navigate uneven surfaces and challenging obstacles. Cardan joints offer rotational freedom and allow for angular movement, enabling the drivetrain to adapt to varying terrains and maintain consistent power transmission. Their universal joint design allows for smooth rotation and accommodates the required range of motion.

5. Compact Design: Cardan joints have a relatively compact design, making them suitable for integration into the limited space available in off-road vehicles and equipment. Their compact size allows for efficient packaging within the drivetrain system, maximizing ground clearance, and optimizing vehicle or equipment design.

6. Maintenance and Serviceability: Cardan joints are generally robust and require minimal maintenance. However, regular inspection and lubrication are necessary to ensure optimal performance and longevity. Their design often allows for easy access and replacement if needed, facilitating maintenance and minimizing downtime in off-road applications.

It’s important to note that while cardan joints offer advantages for off-road vehicles and equipment, their performance and suitability depend on specific application requirements, loads, operating conditions, and other factors. Careful consideration should be given to selecting the appropriate cardan joint size, material, and design based on the anticipated demands of the off-road application.

When incorporating cardan joints into off-road vehicles and equipment, it is advisable to consult with engineers or experts specializing in drivetrain systems and off-road vehicle design. They can provide valuable insights and guidance on the selection, integration, and maintenance of cardan joints for specific off-road applications.

cardan shaft

How does a cardan joint accommodate misalignment between shafts?

A cardan joint, also known as a universal joint or U-joint, is designed to accommodate misalignment between shafts. Its unique structure and mechanism allow for flexibility and compensation when there are angular or axial deviations between the input and output shafts. Here’s a detailed explanation of how a cardan joint accommodates misalignment:

The cardan joint consists of two yokes, typically fork-shaped, and a cross-shaped member called the cross or spider. The yokes are attached to the input and output shafts, while the cross sits in the center, connecting the yokes. The cross has four arms, and each arm has a bearing cap that holds a bearing. The bearings allow the cross to rotate within the yokes.

When the input and output shafts are perfectly aligned, the cardan joint operates in a straight configuration, and the cross remains in a centered position. However, when misalignment occurs, such as angular misalignment or axial misalignment, the cardan joint can flex and adjust to accommodate the deviation.

Angular Misalignment: When the input and output shafts are at an angle to each other, the cardan joint can accommodate the angular misalignment. As the input shaft rotates, it causes the yoke attached to it to rotate. This rotation is transmitted to the cross through the bearing cap and bearing. As the cross rotates, it causes the other yoke attached to the output shaft to rotate. The angular misalignment is compensated by the ability of the cross to tilt and follow the changing angles of the shafts. The bearings and bearing caps allow the cross to pivot and adjust its position, ensuring that the rotational motion is smoothly transmitted despite the misalignment.

Axial Misalignment: In cases of axial misalignment, where there is a difference in the axial position of the input and output shafts, the cardan joint can also accommodate the misalignment. The axial misalignment can cause the yokes to be slightly offset along the axis. However, the flexibility of the cardan joint allows the cross to adjust its position and maintain the connection between the yokes. The bearings and bearing caps within the cross allow it to move slightly along the axis, compensating for the axial misalignment and ensuring that the rotational motion can still be transmitted.

By allowing the cross to tilt and adjust its position, the cardan joint effectively accommodates misalignment between shafts. It provides the flexibility needed to transmit rotational motion and torque even when the input and output shafts are not perfectly aligned. The ability of the cardan joint to compensate for misalignment makes it a versatile component in various applications where flexibility and misalignment tolerance are required.

China wholesaler CZPT Whl Sliding Block Machinery Universal Cardan Joints Used for Straightening Machine Joint  China wholesaler CZPT Whl Sliding Block Machinery Universal Cardan Joints Used for Straightening Machine Joint
editor by CX 2024-01-15

China Hot selling Cardan Joint Drive Shaft Coupling Used for Pipe Mill Machinery (BH type) near me manufacturer

Product Description

SWC cardan shaft for rolling mill

Cardan shaft is a mechanical component for transmitting torque and rotation, usually used to connect driving motor and operation machines that cannot be connected directly because of distance or the need to allow for relative movement between them.

Huading Cardan Universal Shaft Features:
1.We offer over 1000 different spare parts for a wide range of rolling mill, paper machine, textile machine, mining     machine, crane, pipe welding machine and other heavy duty machinery.
2.Elastomer connecting in the middle
3.Can absorb vibration, compensates for radial, axial and angular deviation
4.Oil resistance and electrical insulation
5.Have the same characteristic of clockwise and anticlockwise rotation

♦Cardan Shaft Types:
We can supply you SWP, SWC, WSD, WS universal coupling as following:

Welded shaft type with length compensation / expansion joint

Short type with length compensation / expansion joint

Short type without length compensation / expansion joint

Long type without length compensation / expansion joint

Double flange with length compensation / expansion joint

Long type with big length compensation / big expansion joint

Super Short type with length compensation / expansion joint

♦Technical Data

♦Our Services
1.Design Services
Our design team has experience in cardan shaft relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2.Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping

3.Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4.Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5.Quality Control
Every step should be special test by Professional Staff according to the standard of ISO9001 and TS16949.

♦Products List

Transmission Machinery Parts Name Model
universal coupling WS  WSD  WSP
cardan shaft SWC  SWP  SWZ
tooth coupling CL  CLZ  GCLD  GIICL  GICL  NGCL  GGCL PGCLK
disc coupling JMI   JMIJ   JMII    JMIIJ
high flexible coupling LM
chain coupling GL
jaw coupling LT
grid coupling JS

Product Show

Welcome to customize products from our factory and pls send us more details about your purchasing.
Thank you for your time and attention.

 

What Are the Advantages of a Splined Shaft?

If you are looking for the right splined shaft for your machine, you should know a few important things. First, what type of material should be used? Stainless steel is usually the most appropriate choice, because of its ability to offer low noise and fatigue failure. Secondly, it can be machined using a slotting or shaping machine. Lastly, it will ensure smooth motion. So, what are the advantages of a splined shaft?
Stainless steel is the best material for splined shafts

When choosing a splined shaft, you should consider its hardness, quality, and finish. Stainless steel has superior corrosion and wear resistance. Carbon steel is another good material for splined shafts. Carbon steel has a shallow carbon content (about 1.7%), which makes it more malleable and helps ensure smooth motion. But if you’re not willing to spend the money on stainless steel, consider other options.
There are 2 main types of splines: parallel splines and crowned splines. Involute splines have parallel grooves and allow linear and rotary motion. Helical splines have involute teeth and are oriented at an angle. This type allows for many teeth on the shaft and minimizes the stress concentration in the stationary joint.
Large evenly spaced splines are widely used in hydraulic systems, drivetrains, and machine tools. They are typically made from carbon steel (CR10) and stainless steel (AISI 304). This material is durable and meets the requirements of ISO 14-B, formerly DIN 5463-B. Splined shafts are typically made of stainless steel or C45 steel, though there are many other materials available.
Stainless steel is the best material for a splined shaft. This metal is also incredibly affordable. In most cases, stainless steel is the best choice for these shafts because it offers the best corrosion resistance. There are many different types of splined shafts, and each 1 is suited for a particular application. There are also many different types of stainless steel, so choose stainless steel if you want the best quality.
For those looking for high-quality splined shafts, CZPT Spline Shafts offer many benefits. They can reduce costs, improve positional accuracy, and reduce friction. With the CZPT TFE coating, splined shafts can reduce energy and heat buildup, and extend the life of your products. And, they’re easy to install – all you need to do is install them.
splineshaft

They provide low noise, low wear and fatigue failure

The splines in a splined shaft are composed of 2 main parts: the spline root fillet and the spline relief. The spline root fillet is the most critical part, because fatigue failure starts there and propagates to the relief. The spline relief is more susceptible to fatigue failure because of its involute tooth shape, which offers a lower stress to the shaft and has a smaller area of contact.
The fatigue life of splined shafts is determined by measuring the S-N curve. This is also known as the Wohler curve, and it is the relationship between stress amplitude and number of cycles. It depends on the material, geometry and way of loading. It can be obtained from a physical test on a uniform material specimen under a constant amplitude load. Approximations for low-alloy steel parts can be made using a lower-alloy steel material.
Splined shafts provide low noise, minimal wear and fatigue failure. However, some mechanical transmission elements need to be removed from the shaft during assembly and manufacturing processes. The shafts must still be capable of relative axial movement for functional purposes. As such, good spline joints are essential to high-quality torque transmission, minimal backlash, and low noise. The major failure modes of spline shafts include fretting corrosion, tooth breakage, and fatigue failure.
The outer disc carrier spline is susceptible to tensile stress and fatigue failure. High customer demands for low noise and low wear and fatigue failure makes splined shafts an excellent choice. A fractured spline gear coupling was received for analysis. It was installed near the top of a filter shaft and inserted into the gearbox motor. The service history was unknown. The fractured spline gear coupling had longitudinally cracked and arrested at the termination of the spline gear teeth. The spline gear teeth also exhibited wear and deformation.
A new spline coupling method detects fault propagation in hollow cylindrical splined shafts. A spline coupling is fabricated using an AE method with the spline section unrolled into a metal plate of the same thickness as the cylinder wall. In addition, the spline coupling is misaligned, which puts significant concentration on the spline teeth. This further accelerates the rate of fretting fatigue and wear.
A spline joint should be lubricated after 25 hours of operation. Frequent lubrication can increase maintenance costs and cause downtime. Moreover, the lubricant may retain abrasive particles at the interfaces. In some cases, lubricants can even cause misalignment, leading to premature failure. So, the lubrication of a spline coupling is vital in ensuring proper functioning of the shaft.
The design of a spline coupling can be optimized to enhance its wear resistance and reliability. Surface treatments, loads, and rotation affect the friction properties of a spline coupling. In addition, a finite element method was developed to predict wear of a floating spline coupling. This method is feasible and provides a reliable basis for predicting the wear and fatigue life of a spline coupling.
splineshaft

They can be machined using a slotting or shaping machine

Machines can be used to shape splined shafts in a variety of industries. They are useful in many applications, including gearboxes, braking systems, and axles. A slotted shaft can be manipulated in several ways, including hobbling, broaching, and slotting. In addition to shaping, splines are also useful in reducing bar diameter.
When using a slotting or shaping machine, the workpiece is held against a pedestal that has a uniform thickness. The machine is equipped with a stand column and limiting column (Figure 1), each positioned perpendicular to the upper surface of the pedestal. The limiting column axis is located on the same line as the stand column. During the slotting or shaping process, the tool is fed in and out until the desired space is achieved.
One process involves cutting splines into a shaft. Straddle milling, spline shaping, and spline cutting are 2 common processes used to create splined shafts. Straddle milling involves a fixed indexing fixture that holds the shaft steady, while rotating milling cutters cut the groove in the length of the shaft. Several passes are required to ensure uniformity throughout the spline.
Splines are a type of gear. The ridges or teeth on the drive shaft mesh with grooves in the mating piece. A splined shaft allows the transmission of torque to a mate piece while maximizing the power transfer. Splines are used in heavy vehicles, construction, agriculture, and massive earthmoving machinery. Splines are used in virtually every type of rotary motion, from axles to transmission systems. They also offer better fatigue life and reliability.
Slotting or shaping machines can also be used to shape splined shafts. Slotting machines are often used to machine splined shafts, because it is easier to make them with these machines. Using a slotting or shaping machine can result in splined shafts of different sizes. It is important to follow a set of spline standards to ensure your parts are manufactured to the highest standards.
A milling machine is another option for producing splined shafts. A spline shaft can be set up between 2 centers in an indexing fixture. Two side milling cutters are mounted on an arbor and a spacer and shims are inserted between them. The arbor and cutters are then mounted to a milling machine spindle. To make sure the cutters center themselves over the splined shaft, an adjustment must be made to the spindle of the machine.
The machining process is very different for internal and external splines. External splines can be broached, shaped, milled, or hobbed, while internal splines cannot. These machines use hard alloy, but they are not as good for internal splines. A machine with a slotting mechanism is necessary for these operations.

China Hot selling Cardan Joint Drive Shaft Coupling Used for Pipe Mill Machinery (BH type)   near me manufacturer China Hot selling Cardan Joint Drive Shaft Coupling Used for Pipe Mill Machinery (BH type)   near me manufacturer