China Best Sales 20cr Material Automobile Cardan Cross Shaft Universal Joint Gun-48

Product Description

Product Deascription


Model No GUN-48
Material stainless steel

Other Models

PARTA NO. Dmm Omm Lmm
19   44.6
-06 23.84   61.3
28 52.2 83
28 37.2 68
-01 28   70.95
28   70.95
28 42.5 73
28   70.95
3 30   88
53A-2257125-10 35   98
A 39   118
39   118
A-1 39   118
50   135
255B-2257125 50   155
50   155
53205-22 0571 1 50   155
5 50   135
33541 62   173
62   173
65641 72   185


Part No. D mm L mm Spicer
5-263X 34.9 126.2 5-263X
5-275X 34.9 126.2 5-275X
5-2X 23.8 61.2 5-2X
5-31000X 22 55 5-31000X
5-310X 27 61.9 5-310X
5-316X 65.1 144.4 5-316X
5-32000X 23.82 61.2 5-32000X
5-33000X 27 74.6 5-33000X
5-3400X 32 76 5-3400X
5-35000X 36 89 5-35000X
5-431X 33.3 67.4 5-431X
5-443X 27 61.9 5-443X
5-4X 27.01 74.6 5-4X
GU1000 27 81.7 5-153X
GU1100 27 74.6 5-4X


PARTA NO. Dmm Omm Lmm
GUN-25 32 64  
GUN-26 23. 82 64 61.3
GUN-27 25 40  
GUN-28 20. 01 35 57
GUN-29 28 53  
GUN-30 30. 188   92.08
GUN-31 32   107
GUN-32 35.5   119.2
GUN-33 43   128
GUN-34 25 52  
GUN-36 25   77.6
GUN-38 26 45.6  
GUN-41 43   136
GUN-43 55.1   163.8
GUN-44 20.5   56.6
GUN-45 20.7   52.4
GUN-46 27 46  
GUN-47 27   71.75
GUN-48 27   81.75


Company Profile

HangZhou Terry Machinery Co.Ltd is a leading supplier of bearings, linear motion
system for CNC,ball transfer unit and transmission component. The growing industrial and
favorable policy of HangZhoubenefit the development of Terry Machinery.Our  products are
utilized in industrial, motorcycle, vehicleand Automation applications. Now we are exporting
to 46 countries includingUSA, GBR, Germany, Spain,Poland, Turkey ect. The goal of Terry
Machinery to provide out customers with widest range of productsatcompetitive prices, backed
with the best Service.

Packing & Deliverey

Custome Praise

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24 Hours Online Answering
Warranty: 1 Year
Condition: New
US$ 2/Piece
1 Piece(Min.Order)


Order Sample

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.

about shipping cost and estimated delivery time.
Payment Method:


Initial Payment

Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

cardan shaft

What are the potential limitations or drawbacks of using cardan joints?

While cardan joints offer numerous advantages in transmitting rotational motion between misaligned shafts, they also have certain limitations and drawbacks to consider. Here are some potential limitations associated with the use of cardan joints:

  • Angular Limitations: Cardan joints have limited angularity or operating angles. They are designed to operate within specific angular ranges, and exceeding these angles can cause accelerated wear, increased vibration, and potential joint failure. Extreme operating angles can lead to binding, decreased efficiency, and reduced power transmission capacity. In applications where large operating angles are required, alternative flexible coupling mechanisms or constant velocity joints may be more suitable.
  • Backlash and Torsional Stiffness: Cardan joints inherently exhibit some degree of backlash, which is the clearance or free play between the mating components. This can result in a slight delay in power transmission and can affect the precision of motion in certain applications. Additionally, cardan joints may have higher torsional stiffness compared to other coupling mechanisms, which can transmit higher vibrations and shocks to the connected components.
  • Maintenance Requirements: Cardan joints require regular maintenance to ensure proper lubrication, alignment, and performance. The lubricant needs to be regularly replenished or replaced, and the joint should be inspected for wear, misalignment, or other issues. Failure to perform adequate maintenance can result in premature wear, reduced efficiency, and potential joint failure. Maintenance procedures may require specialized tools and expertise.
  • Space and Weight: Cardan joints can occupy a significant amount of space due to their design and the need for perpendicular shafts. In applications with limited space constraints, finding suitable locations for cardan joints can be challenging. Additionally, the weight of cardan joints, especially in heavy-duty applications, can add to the overall weight of the system, which may have implications for fuel efficiency, payload capacity, or overall performance.
  • Cost: Cardan joints, particularly high-quality and precision-engineered ones, can be relatively expensive compared to other coupling mechanisms. The complex design, manufacturing tolerances, and specialized materials involved contribute to their higher cost. In cost-sensitive applications, alternative coupling solutions may be considered if the angular limitations and other drawbacks of cardan joints are not critical.
  • High-Speed Limitations: At high rotational speeds, cardan joints can experience increased vibration, imbalance, and potential for fatigue failure. The rotating components of the joint can generate centrifugal forces that impact the balance and stability of the system. In high-speed applications, careful design considerations, including balancing and vibration analysis, may be necessary to mitigate these issues.

It is important to evaluate the specific application requirements, operating conditions, and limitations when considering the use of cardan joints. While they offer versatility and flexibility in many scenarios, alternative coupling mechanisms may be more suitable in cases where the limitations and drawbacks of cardan joints pose significant challenges.

cardan shaft

Can cardan joints be used in precision manufacturing equipment?

Yes, cardan joints can be used in precision manufacturing equipment under certain circumstances. However, their suitability depends on the specific requirements of the equipment and the level of precision needed. Here’s a detailed explanation:

Cardan joints are mechanical components that provide torque transmission and compensate for misalignment between rotating shafts. They consist of universal joints that allow for angular movement and accommodate misalignment. While cardan joints offer flexibility and are commonly used in various industrial applications, their use in precision manufacturing equipment may have limitations.

Precision manufacturing equipment typically requires high accuracy, repeatability, and minimal play or backlash in its mechanical components. Cardan joints, due to the nature of their design, introduce some degree of play or backlash, which can impact precision operations. The universal joints in cardan joints have inherent clearance, which can result in angular positioning errors and affect the overall precision of the equipment.

However, in certain applications where the level of precision required is not extremely high, cardan joints can still be utilized effectively. They can provide the necessary torque transmission and compensate for moderate misalignments while maintaining acceptable precision levels. Examples of precision manufacturing equipment where cardan joints may find application include rotary tables, indexing mechanisms, or non-critical assembly systems.

It’s important to note that when considering the use of cardan joints in precision manufacturing equipment, careful evaluation and analysis are necessary. Factors such as the magnitude of misalignment, required accuracy, operating speed, and load conditions should be taken into account. In some cases, additional measures such as incorporating backlash compensation mechanisms or using precision-aligned cardan joints may be necessary to mitigate the inherent play and improve precision.

Ultimately, the decision to use cardan joints in precision manufacturing equipment should be based on a thorough assessment of the specific application requirements, precision tolerances, and potential trade-offs between flexibility and precision. Consulting with engineers or experts specializing in precision mechanical systems can provide valuable insights and guidance in determining the suitability of cardan joints for a particular precision manufacturing application.

cardan shaft

Can you explain the purpose of a cardan joint in a drive shaft?

A cardan joint, also known as a universal joint or U-joint, serves a crucial purpose in a drive shaft. The drive shaft is responsible for transmitting rotational motion and torque from the engine or power source to the wheels or driven components. Here’s a detailed explanation of the purpose of a cardan joint in a drive shaft:

A drive shaft is a mechanical component that connects the output of the engine or power source to the wheels or driven components of a vehicle or machinery. It is typically a tubular shaft that rotates at high speeds and transmits the torque generated by the engine to propel the vehicle or operate the machinery. The drive shaft needs to accommodate various factors, including changes in distance, misalignment, and different angles between the engine and the wheels or driven components.

This is where the cardan joint comes into play. The cardan joint is located at each end of the drive shaft, connecting it to the engine or power source and the wheels or driven components. The purpose of the cardan joint is to allow the drive shaft to transmit rotational motion and torque while accommodating the misalignment and changes in angles that occur between these components.

When the engine or power source rotates, it generates rotational motion and torque. The cardan joint at the engine end of the drive shaft receives this rotational motion and torque and transfers it to the drive shaft. As the drive shaft rotates, the cardan joint allows for the changes in angle and misalignment between the engine and the wheels or driven components. This flexibility of the cardan joint ensures that the drive shaft can operate smoothly and transmit power effectively, even when the components are not perfectly aligned or when there are variations in the angles.

At the other end of the drive shaft, another cardan joint is present to connect the drive shaft to the wheels or driven components. This cardan joint receives the rotational motion and torque from the drive shaft and transfers it to the wheels or driven components, allowing them to rotate and perform their intended functions.

The cardan joint in the drive shaft effectively compensates for misalignment, changes in angles, and variations in distance between the engine and the wheels or driven components. It ensures that the rotational motion and torque generated by the engine can be transmitted smoothly and efficiently to propel the vehicle or operate the machinery.

Overall, the purpose of the cardan joint in a drive shaft is to provide flexibility and accommodate misalignment, allowing for the effective transmission of rotational motion and torque between the engine or power source and the wheels or driven components.

China Best Sales 20cr Material Automobile Cardan Cross Shaft Universal Joint Gun-48  China Best Sales 20cr Material Automobile Cardan Cross Shaft Universal Joint Gun-48
editor by CX 2024-03-26