Tag Archives: shaft wholesaler

China wholesaler Cardan Shaft CV Joint 52105758AC 52105758ad 932-303 P52853432AA 52105728ad for Jeep Grand Cheroke

Product Description

1. Price : EXW Price
2.Shipping Way: By Sea, DHL, UPS, FEDEX or as customers’ requirements
3.Payment Terms: Via T/T ,L/C ,Paypal ,Westerm Union,Moneygram.
4.Delivery Time: Within 30 days after deposit or as customers’ requirement
5.Packaging:Packaging:

1.Carton Box, 
2.OEM Label, 
3.Neutral Package,

4.We can perform according to customer’s requirements

Ideer Established in 2571, which is a professional manufacturer and exporter that is concerned with the design, development and production of auto parts. We are located in HangZhou, with convenient transportation access. All of our productscomply with international quality standards and are greatly appreciated in a variety of different markets throughout the world.
Covering an area of 10000 square meters, we now have over 100 employees, an annual sales figure that exceeds USD 300,000 and are currently exporting 80% of our production worldwide. Our well-equipped facilities and excellent quality control throughout all stages of production enables us to guarantee total customer satisfaction.
Besides, we have received ISO9001 and CE.As a result of our high quality products and outstanding customer service, we have gained a global sales network CHINAMFG South America.
If you are interested in any of our products or would like to discuss a customorder, please feel free to contact us. We are looking CHINAMFG to forming successful business relationships with new clients around the world in the near future.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24 Hours
Condition: New
Color: Silver
Samples:
US$ 200/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

cardan shaft

Can cardan joints be used in both horizontal and vertical orientations?

Yes, cardan joints can be used in both horizontal and vertical orientations. Cardan joints, also known as universal joints, are flexible mechanical couplings that transmit torque between misaligned shafts. Their design allows for angular movement and compensation of misalignments in various orientations. Here’s a detailed explanation of how cardan joints can be used in both horizontal and vertical orientations:

Horizontal Orientation: In a horizontal orientation, the input and output shafts of the cardan joint are aligned horizontally, typically parallel to the ground. The joint is capable of transmitting torque smoothly and efficiently between the misaligned shafts while accommodating angular, parallel, and axial misalignments. This makes it suitable for a wide range of horizontal applications, including automotive drivetrains, industrial machinery, and agricultural equipment.

Vertical Orientation: In a vertical orientation, the input and output shafts of the cardan joint are aligned vertically, with one shaft positioned above the other. The joint is still capable of transmitting torque and compensating for misalignments in this configuration. However, it is important to consider the effects of gravity and the additional load imposed on the joint due to the weight of the shafts and any connected components. Adequate support and proper bearing selection should be considered to ensure reliable operation in vertical applications.

Whether in horizontal or vertical orientations, cardan joints offer several advantages that make them versatile for various applications:

  • Misalignment Compensation: Cardan joints excel at compensating for angular, parallel, and axial misalignments between shafts. This flexibility allows for smooth torque transmission and reduces stress on the connected components.
  • Torque Transmission: Cardan joints are capable of transmitting high levels of torque between misaligned shafts. This makes them suitable for applications that require the transfer of substantial power.
  • Durability: Cardan joints are typically constructed from durable materials, such as alloy steels, which provide excellent strength and resistance to fatigue and wear. This durability enables them to withstand the demands of various orientations and operating conditions.
  • Compact Design: Cardan joints have a compact design, allowing for efficient installation and integration within the system, regardless of the orientation. This is particularly advantageous in applications with space constraints.
  • Versatility: Cardan joints are available in various sizes and configurations to accommodate different orientations and applications. They can be customized to meet specific torque and speed requirements.

It is important to note that specific considerations may apply depending on the application and the magnitude of misalignments. Factors such as load capacity, lubrication, bearing arrangement, and maintenance should be taken into account to ensure optimal performance and longevity of the cardan joint.

In summary, cardan joints can be used in both horizontal and vertical orientations due to their ability to compensate for misalignments and transmit torque between shafts. Their versatility, durability, and compact design make them suitable for a wide range of applications in various orientations.

cardan shaft

Can cardan joints be used in off-road vehicles and equipment?

Yes, cardan joints can be used in off-road vehicles and equipment, and they are commonly employed in various drivetrain and power transmission applications. Cardan joints offer several characteristics that make them suitable for off-road environments. Here’s a detailed explanation:

1. Misalignment Compensation: Off-road vehicles and equipment often encounter uneven terrain, which can result in misalignments between the drivetrain components. Cardan joints are designed to accommodate misalignments and angular variations, allowing for smooth power transmission even in challenging off-road conditions. They can compensate for misalignments caused by suspension articulation, vehicle flexing, and uneven ground surfaces.

2. High Torque Transmission: Off-road vehicles and equipment typically require the transfer of high torque from the engine to the wheels or other driven components. Cardan joints are capable of efficiently transmitting torque even at significant angles, enabling robust power delivery in off-road applications. They can handle the torque demands associated with climbing steep inclines, traversing obstacles, and powering heavy equipment.

3. Durability and Strength: Off-road environments can be harsh, subjecting drivetrain components to extreme conditions such as impacts, vibrations, and debris. Cardan joints are often constructed using durable materials such as alloy steels or high-strength alloys, which provide the necessary strength and resilience to withstand the rigors of off-road use. They are designed to handle the demanding loads and forces encountered in rough terrains.

4. Articulation and Flexibility: Off-road vehicles and equipment require articulation and flexibility to navigate uneven surfaces and challenging obstacles. Cardan joints offer rotational freedom and allow for angular movement, enabling the drivetrain to adapt to varying terrains and maintain consistent power transmission. Their universal joint design allows for smooth rotation and accommodates the required range of motion.

5. Compact Design: Cardan joints have a relatively compact design, making them suitable for integration into the limited space available in off-road vehicles and equipment. Their compact size allows for efficient packaging within the drivetrain system, maximizing ground clearance, and optimizing vehicle or equipment design.

6. Maintenance and Serviceability: Cardan joints are generally robust and require minimal maintenance. However, regular inspection and lubrication are necessary to ensure optimal performance and longevity. Their design often allows for easy access and replacement if needed, facilitating maintenance and minimizing downtime in off-road applications.

It’s important to note that while cardan joints offer advantages for off-road vehicles and equipment, their performance and suitability depend on specific application requirements, loads, operating conditions, and other factors. Careful consideration should be given to selecting the appropriate cardan joint size, material, and design based on the anticipated demands of the off-road application.

When incorporating cardan joints into off-road vehicles and equipment, it is advisable to consult with engineers or experts specializing in drivetrain systems and off-road vehicle design. They can provide valuable insights and guidance on the selection, integration, and maintenance of cardan joints for specific off-road applications.

cardan shaft

What industries commonly use cardan joints?

A cardan joint, also known as a universal joint or U-joint, finds applications in various industries that require efficient power transmission and the ability to accommodate misalignment. Here’s a detailed explanation of the industries that commonly use cardan joints:

  • Automotive Industry: The automotive industry extensively uses cardan joints in drivetrain systems. Cardan joints are employed in vehicles with rear-wheel drive, all-wheel drive, and four-wheel drive configurations. They are used in the transmission and drive shafts to transmit rotational motion from the engine to the wheels. Cardan joints help compensate for misalignment between the engine, transmission, and rear axle, allowing for smooth power transmission and flexible movement.
  • Industrial Machinery: Cardan joints have widespread use in industrial machinery across various sectors. They are employed in power transmission systems that require the transmission of rotational motion between non-collinear shafts. Industrial machinery such as conveyor systems, printing presses, machine tools, pumps, mixers, and many others utilize cardan joints for efficient power transmission and the ability to handle misalignment.
  • Aerospace and Aviation: The aerospace and aviation industries utilize cardan joints in various applications. They are commonly used in aircraft control systems, connecting the control surfaces (elevator, rudder, ailerons) to the cockpit controls. Cardan joints allow for the transmission of pilot input to the control surfaces while accommodating misalignment and changes in angles during flight. They contribute to the precise control and maneuverability of aircraft.
  • Marine and Shipbuilding: Cardan joints have applications in the marine and shipbuilding industries. They are used in propulsion systems to transmit torque from the engine to the propeller shaft. Cardan joints enable the engine to be mounted at an angle or in a different position from the propeller shaft, compensating for misalignment caused by the hull shape and design. They ensure efficient power transmission and maneuverability of marine vessels.
  • Railway and Transportation: The railway and transportation sectors utilize cardan joints in various applications. They are employed in locomotives and train cars for transmitting rotational motion between different components, such as the engine, gearbox, and wheel axle. Cardan joints accommodate misalignment caused by the movement and articulation of train cars on curved tracks, ensuring smooth power transmission and safe operation of railway systems.
  • Mining and Construction: The mining and construction industries utilize cardan joints in heavy machinery and equipment. Excavators, loaders, bulldozers, and off-highway trucks employ cardan joints for power transmission and the ability to handle misalignment caused by the challenging working conditions. Cardan joints ensure efficient operation and durability of mining and construction equipment.
  • Industrial Robotics: Cardan joints find applications in industrial robotics and automation. They are used in robotic arms and manipulators to transmit rotational motion between different segments or joints of the robotic system. Cardan joints enable precise and flexible movement, allowing robots to perform complex tasks in manufacturing, assembly, and other industrial processes.

These are just some of the industries that commonly use cardan joints. Their ability to transmit rotational motion, accommodate misalignment, and provide flexibility make them essential components in a wide range of applications across various sectors.

China wholesaler Cardan Shaft CV Joint 52105758AC 52105758ad 932-303 P52853432AA 52105728ad for Jeep Grand Cheroke  China wholesaler Cardan Shaft CV Joint 52105758AC 52105758ad 932-303 P52853432AA 52105728ad for Jeep Grand Cheroke
editor by CX 2024-04-17

China wholesaler Wide Angle Joint Angle for Agricultural Cardan Shaft

Product Description

 

Product Description

We are committed to using the most advanced technology and equipment to ensure that the PTO shafts we produce have excellent quality and reliability, to ensure that customers receive the best performance and service life. Our team is composed of experienced professionals who can tailor the PTO shaft to the customer’s needs to best meet their specific requirements.Product include wide angle-central body,wide angle-triangular tube yoke,wide angle-lemon tube yoke and wide angle-star tube yoke,We look CHINAMFG to working with you and manufacturing high-quality wide angle  for you to help your project achieve greater success. If you have any questions about our , please feel free to contact us.

Here is our advantages when compare to similar products from China:
1.Forged yokes make PTO shafts strong enough for usage and working;
2.Internal sizes standard to confirm installation smooth;
3.CE and ISO certificates to guarantee to quality of our goods;
4.Strong and professional package to confirm the good situation when you receive the goods.

Product Specifications

 

 

 

Packaging & Shipping

 

 

Company Profile

    HangZhou Hanon Technology Co.,ltd is a modern enterprise specilizing in the development,production,sales and services of Agricultural Parts like PTO shaft and Gearboxes and Hydraulic parts like  Cylinder , Valve ,Gearpump and motor etc..
    We adhere to the principle of ” High Quality, Customers’Satisfaction”, using advanced technology and equipments to ensure all the technical standards of transmission .We follow the principle of people first , trying our best to set up a pleasant surroundings and platform of performance for each employee. So everyone can be self-consciously active to join Hanon Machinery.

FAQ

1.WHAT’S THE PAYMENT TERM?

When we quote for you,we will confirm with you the way of transaction,FOB,CIFetc.<br> For mass production goods, you need to pay 30% deposit before producing and70% balance against copy of documents.The most common way is by T/T.  

2.HOW TO DELIVER THE GOODS TO US?

Usually we will ship the goods to you by sea.

3.How long is your delivery time and shipment?

30-45days

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Wide Angle
Usage: Pto Shaft
Material: 45cr Steel
Power Source: Pto Shaft
Weight: 7-13kg
After-sales Service: Online Support
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

cardan shaft

How do you calculate the operating angles of a cardan joint?

The operating angles of a cardan joint can be calculated based on the angular misalignment between the input and output shafts. The operating angles are crucial for determining the joint’s performance and ensuring its proper functioning. Here’s a detailed explanation of how to calculate the operating angles of a cardan joint:

  1. Identify the Shaft Axes: Begin by identifying the axes of the input and output shafts connected by the cardan joint. These axes represent the rotational axes of the shafts.
  2. Measure the Angular Misalignments: Measure the angular misalignments between the shaft axes. The misalignments are typically measured in terms of angles, such as angular displacement in degrees or radians. There are three types of misalignments to consider:
    • Angular Misalignment (α): This refers to the angular difference between the two shaft axes in the horizontal plane (X-Y plane).
    • Parallel Misalignment (β): Parallel misalignment represents the offset or displacement between the two shaft axes in the vertical plane (Z-axis).
    • Axial Misalignment (γ): Axial misalignment refers to the shift or displacement of one shaft along its axis with respect to the other shaft.
  3. Calculate the Operating Angles: Once the misalignments are measured, the operating angles can be calculated using trigonometric functions. The operating angles are:
    • Operating Angle (θ): The operating angle is the total angular misalignment between the input and output shafts. It is calculated as the square root of the sum of the squares of the individual misalignments:

These calculated operating angles provide valuable information about the misalignment and geometry of the cardan joint. They help in selecting the appropriate joint size, determining the joint’s torque capacity, assessing potential operating issues, and ensuring proper installation and alignment of the joint within the system.

It is important to note that these calculations assume small operating angles and neglect any elastic deformation or non-linearities that may occur in the joint. In cases where larger operating angles or more precise calculations are required, advanced engineering techniques or software tools specific to cardan joint analysis may be employed.

cardan shaft

Can cardan joints be used in precision manufacturing equipment?

Yes, cardan joints can be used in precision manufacturing equipment under certain circumstances. However, their suitability depends on the specific requirements of the equipment and the level of precision needed. Here’s a detailed explanation:

Cardan joints are mechanical components that provide torque transmission and compensate for misalignment between rotating shafts. They consist of universal joints that allow for angular movement and accommodate misalignment. While cardan joints offer flexibility and are commonly used in various industrial applications, their use in precision manufacturing equipment may have limitations.

Precision manufacturing equipment typically requires high accuracy, repeatability, and minimal play or backlash in its mechanical components. Cardan joints, due to the nature of their design, introduce some degree of play or backlash, which can impact precision operations. The universal joints in cardan joints have inherent clearance, which can result in angular positioning errors and affect the overall precision of the equipment.

However, in certain applications where the level of precision required is not extremely high, cardan joints can still be utilized effectively. They can provide the necessary torque transmission and compensate for moderate misalignments while maintaining acceptable precision levels. Examples of precision manufacturing equipment where cardan joints may find application include rotary tables, indexing mechanisms, or non-critical assembly systems.

It’s important to note that when considering the use of cardan joints in precision manufacturing equipment, careful evaluation and analysis are necessary. Factors such as the magnitude of misalignment, required accuracy, operating speed, and load conditions should be taken into account. In some cases, additional measures such as incorporating backlash compensation mechanisms or using precision-aligned cardan joints may be necessary to mitigate the inherent play and improve precision.

Ultimately, the decision to use cardan joints in precision manufacturing equipment should be based on a thorough assessment of the specific application requirements, precision tolerances, and potential trade-offs between flexibility and precision. Consulting with engineers or experts specializing in precision mechanical systems can provide valuable insights and guidance in determining the suitability of cardan joints for a particular precision manufacturing application.

cardan shaft

How do you install a cardan joint?

Installing a cardan joint involves several steps to ensure proper alignment, secure attachment, and reliable operation. Here’s a detailed explanation of the process for installing a cardan joint:

  1. Prepare the Components: Gather all the necessary components for the installation, including the cardan joint, yokes, bearings, retaining rings, and any additional hardware required. Ensure that the components are clean and free from dirt, debris, or damage.
  2. Align the Shafts: Position the input and output shafts that will be connected by the cardan joint. Align the shafts as closely as possible to minimize misalignment. The shafts should be collinear and positioned at the desired angle or position for the specific application.
  3. Attach the Yokes: Attach the yokes to the input and output shafts. The yokes typically have holes or bores that match the diameter of the shafts. Securely fasten the yokes to the shafts using appropriate fasteners, such as set screws or bolts. Ensure that the yokes are tightly secured to prevent any movement or slippage during operation.
  4. Assemble the Cardan Joint: Assemble the cardan joint by connecting the yokes with the cross-shaped component. The cross should fit snugly into the yoke holes or bores. Apply a suitable lubricant to the bearings to ensure smooth rotation and reduce friction. Some cardan joints may have retaining rings or clips to secure the bearings in place. Make sure all the components are properly aligned and seated.
  5. Check for Clearance: Verify that there is adequate clearance between the cardan joint and any surrounding components, such as chassis or housing. Ensure that the cardan joint can rotate freely without any obstructions or interference. If necessary, adjust the positioning or mounting of the cardan joint to provide sufficient clearance.
  6. Perform a Trial Run: Before finalizing the installation, perform a trial run to check the functionality of the cardan joint. Rotate the connected shafts manually or with a suitable power source and observe the movement of the joint. Ensure that there are no unusual noises, binding, or excessive play. If any issues are detected, investigate and address them before proceeding.
  7. Secure the Cardan Joint: Once the functionality is confirmed, secure the cardan joint in its final position. This may involve tightening additional fasteners or locking mechanisms to keep the joint in place. Use the appropriate torque specifications provided by the manufacturer to ensure proper tightening without damaging the components.
  8. Perform Final Checks: Double-check all the connections, fasteners, and clearances to ensure that everything is properly installed and secured. Verify that the cardan joint operates smoothly and without any issues. Inspect the entire system for any signs of misalignment, excessive vibration, or other abnormalities.

It is important to follow the specific installation instructions provided by the manufacturer of the cardan joint, as different designs and configurations may have specific requirements. If you are unsure or unfamiliar with the installation process, it is recommended to consult the manufacturer’s documentation or seek assistance from a qualified professional to ensure a proper and safe installation of the cardan joint.

China wholesaler Wide Angle Joint Angle for Agricultural Cardan Shaft  China wholesaler Wide Angle Joint Angle for Agricultural Cardan Shaft
editor by CX 2024-03-01

China wholesaler Universal Joint for Cardan Shaft 20-036-7205

Product Description

20-036-7205

Universal joint description
1) Materials: 20Cr
2) Can develop according to customer’s drawings or samples
3)  Full range  of part number for the universal joint
4) OEM quality and reasonable price

How customer Saying: 

Russia application: 

Item No

Part Number

Weight(kg)

SIZE

1

5320-22 0571 1

2.5

50X135-1

2

4310-22 0571 1

3.2

50X155

3

53205-22 0571 1

3.2

50X155-1

4

53A-2257125

0.95

35X98

5

53A-2257125 no logo

0.94

35X98

6

0.6

30X88(small needle)

7

no logo

0.6

30X88(small needle)

8

0.6

30X55X88

9

0.25

23.8X61.2

10

0.42

28X71

11

5.49

62X173

12

6520-22 0571 1

4.2

57X152

13

0.2

UJR3302 19X44.6

14

2.6

50X135-3

15

1.43

39X118-1

16

1.43

39X118

17

no lubricator

0.96

39X118

18

-01 with circlips

1.1

39X118-1

19

5

2.6

50X135-2

20

4

8.3

72X185

22

131-22 0571 1

2.5

50X135

23

0.24

W23X61-1

24

0.51

UJ412(28X55X83)

25

0.46

UJR5320(28X36X67)

26 -10 2.49 47.6X135
27 6340/ 0.13 19X56
28 41-015-7205 3.3 In stock now 
  340–1 141-10-14160
144-10-12620 -1 415-20-12620
144-15–1 418-20-326-1 175-20-3-1   
145-14–1   
14X-11-11110 -1   
150-11-00097 381-97-6907-1   
150-11-12360 381-97-6908-1

More catalogue, please visit ourweb

Some Packing example: 

About us: 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Color: Silver
Certification: ISO, Ts16949
Structure: Single
Material: 20cr
Type: 20crmnti
Samples:
US$ 0.1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

cardan shaft

How do you calculate the torque capacity of a cardan joint?

Calculating the torque capacity of a cardan joint involves considering various factors such as the joint’s design, material properties, and operating conditions. The torque capacity determines the maximum amount of torque that the joint can transmit without failure. Here’s a detailed explanation of how to calculate the torque capacity of a cardan joint:

  1. Gather Design Information: Start by gathering the necessary design information about the cardan joint, including its dimensions, material properties, and geometry. This information typically includes the outer diameter, inner diameter, length, and material strength properties.
  2. Calculate Cross-Sectional Area: Use the outer and inner diameters of the joint to calculate its cross-sectional area. The cross-sectional area is required to determine the stress distribution and calculate the torque capacity. The formula to calculate the cross-sectional area of a solid shaft is:
  3. Area = π * (Outer Diameter^2 - Inner Diameter^2) / 4

  4. Consider Material Properties: The material properties of the cardan joint, such as its yield strength or ultimate tensile strength, are essential for calculating the torque capacity. These properties determine the maximum stress that the joint can withstand before failure.
  5. Calculate Maximum Shear Stress: Using the torque applied and the cross-sectional area, the maximum shear stress on the joint can be calculated. The torque applied to the joint is the driving force that needs to be transmitted. The formula to calculate the maximum shear stress is:
  6. Shear Stress = Torque / (Area * 0.5 * Joint Length)

  7. Compare Shear Stress to Material Strength: Compare the calculated maximum shear stress to the material’s yield strength or ultimate tensile strength. Ensure that the shear stress is below the allowable stress to prevent the joint from exceeding its capacity. The allowable stress is typically a fraction of the material’s yield strength or ultimate tensile strength, depending on the safety factor used.

It is important to note that the above calculation provides an approximate estimation of the torque capacity. The actual torque capacity of a cardan joint can be influenced by additional factors, such as the joint’s geometry, loading conditions, operating temperature, and dynamic effects. Consulting the manufacturer’s specifications, engineering standards, or conducting extensive testing is recommended for precise torque capacity determination.

Additionally, it is crucial to consider other factors such as misalignment compensation, fatigue resistance, and service life requirements when selecting a cardan joint for a specific application. These factors may influence the overall performance and reliability of the joint beyond its torque capacity.

cardan shaft

How do you properly maintain and lubricate a cardan joint?

Proper maintenance and lubrication are essential for ensuring the optimal performance, longevity, and reliability of a cardan joint. Regular maintenance helps prevent premature wear, reduce friction, and minimize the risk of component failure. Here’s a detailed explanation of how to properly maintain and lubricate a cardan joint:

  1. Refer to Manufacturer’s Guidelines: Consult the manufacturer’s guidelines and documentation specific to the cardan joint being used. The manufacturer provides valuable information regarding recommended maintenance intervals, lubrication procedures, and compatible lubricants.
  2. Cleanliness: Before lubricating a cardan joint, ensure that the joint and its surrounding area are clean and free from dirt, debris, or contaminants. Use appropriate cleaning methods, such as wiping or brushing, to remove any buildup that could hinder proper lubrication.
  3. Lubrication Points: Identify the lubrication points on the cardan joint. These are typically located at the bearings or bushings where the joint pivots. Refer to the manufacturer’s documentation to determine the specific lubrication points and their recommended lubrication intervals.
  4. Selection of Lubricant: Select a lubricant that is recommended by the manufacturer and suitable for the operating conditions of the cardan joint. Consider factors such as temperature, load, speed, and environmental conditions when choosing the lubricant. Commonly used lubricants for cardan joints include grease or oil with appropriate viscosity and additives.
  5. Applying Grease: If using grease, apply a sufficient amount to the lubrication points. Use a grease gun or other suitable lubrication equipment to deliver the grease accurately. Ensure that the grease reaches the bearings or bushings, allowing it to coat the surfaces evenly.
  6. Applying Oil: If using oil, carefully apply a few drops to each lubrication point. Use a precision oiler or other suitable dispensing method to avoid over-lubrication. The oil should be applied in a controlled manner to prevent excess oil from dripping or spreading to unwanted areas.
  7. Distribution and Spread: After applying the lubricant, operate the cardan joint through its full range of motion several times. This helps distribute the lubricant evenly and ensures proper coverage of the joint’s surfaces. The motion of the joint helps the lubricant penetrate and adhere to the bearing surfaces, reducing friction and wear.
  8. Excess Lubricant: Remove any excess lubricant that may have accumulated around the lubrication points or other areas of the joint. Excess lubricant can attract dirt, debris, or contaminants, which can contribute to accelerated wear or hinder the joint’s operation.
  9. Regular Inspection: Implement a regular inspection schedule for the cardan joint. Periodically check the lubrication points for signs of excessive wear, contamination, or insufficient lubrication. Inspect for leaks, damaged seals, or any other issues that could affect the joint’s performance. Address any problems promptly to prevent further damage or failure.
  10. Maintenance Records: Maintain proper documentation of the maintenance activities performed on the cardan joint. This includes the dates of lubrication, the type of lubricant used, and any observations or issues noted during inspections. Keeping records helps track maintenance history and facilitates timely maintenance planning and troubleshooting.

It’s important to note that the specific maintenance and lubrication requirements may vary depending on the type, design, and application of the cardan joint. Therefore, always refer to the manufacturer’s guidelines and recommendations for the particular cardan joint being used, as they provide the most accurate and relevant information for proper maintenance and lubrication.

cardan shaft

What are the applications of a cardan joint?

A cardan joint, also known as a universal joint or U-joint, has a wide range of applications across various industries. Its ability to transmit rotational motion and accommodate misalignment between shafts makes it suitable for different systems and machines. Here’s a detailed explanation of the applications of a cardan joint:

  • Automotive Drivetrains: One of the primary applications of cardan joints is in automotive drivetrains. They are used in vehicles with rear-wheel drive, all-wheel drive, and four-wheel drive systems. Cardan joints help transmit power from the engine to the driveshaft, allowing the rotational motion to be transferred to the rear axle or all four wheels. They provide flexibility and compensation for misalignment between the engine, transmission, and rear differential.
  • Industrial Machinery: Cardan joints find extensive use in various industrial machinery applications. They are commonly employed in power transmission systems, especially when there is a need to transmit rotational motion between non-collinear shafts. Cardan joints are used in conveyor systems, printing presses, machine tools, pumps, mixers, and many other industrial machines that require efficient transmission of rotational power.
  • Aerospace and Aviation: Cardan joints have applications in the aerospace and aviation industries. They are used in aircraft control systems, such as the control linkages between the control surfaces (elevator, rudder, ailerons) and the cockpit controls. Cardan joints allow for the transmission of pilot input to the control surfaces while accommodating any misalignment or changes in angles during flight.
  • Marine Propulsion: In marine applications, cardan joints are utilized in propulsion systems. They are commonly used in boat drivetrains to transfer rotational motion from the engine to the propeller shaft. Cardan joints enable the engine to be mounted at an angle or in a different position from the propeller shaft, compensating for the misalignment that can arise due to the boat’s hull shape and design.
  • Railway Systems: Cardan joints play a role in railway systems, particularly in drivetrains and couplings. They are used in locomotives and train cars to transfer rotational motion between different components, such as the engine, gearbox, and wheel axle. Cardan joints provide flexibility and accommodate misalignment that may occur due to the movement and articulation of train cars on curved tracks.
  • Mining and Construction Equipment: Cardan joints are employed in heavy-duty mining and construction equipment. They are used in applications such as excavators, loaders, bulldozers, and off-highway trucks. Cardan joints help transmit power and motion between different components of these machines, allowing them to operate efficiently and withstand the demanding conditions of mining and construction environments.
  • Industrial Robotics: Cardan joints find applications in industrial robotics and automation. They are used in robotic arms and manipulators to transmit rotational motion between different segments or joints of the robotic system. Cardan joints enable precise and flexible movement, allowing robots to perform complex tasks in manufacturing, assembly, and other industrial processes.

These are just a few examples of the diverse applications of cardan joints. Their ability to handle misalignment, transmit rotational motion at varying angles, and provide flexibility make them a fundamental component in numerous systems and machines across industries.

China wholesaler Universal Joint for Cardan Shaft 20-036-7205  China wholesaler Universal Joint for Cardan Shaft 20-036-7205
editor by CX 2024-02-29

China wholesaler Widely Used Pto Shaft Cross Universal Joint for Farm Tractor Inner Tubes

Product Description

Widely Used pto shaft cross universal joint for Farm Tractor Inner Tubes
1. Tubes or Pipes
We’ve already got Triangular profile tube and Lemon profile tube for all the series we provide.
And we have some star tube, splined tube and other profile tubes required by our customers (for a certain series). (Please notice that our catalog doesnt contain all the items we produce)
If you want tubes other than triangular or lemon, please provide drawings or pictures.

2.End yokes
We’ve got several types of quick release yokes and plain bore yoke. I will suggest the usual type for your reference.
You can also send drawings or pictures to us if you cannot find your item in our catalog.

3. Safety devices or clutches
I will attach the details of safety devices for your reference. We’ve already have Free wheel (RA), Ratchet torque limiter(SA), Shear bolt torque limiter(SB), 3types of friction torque limiter (FF,FFS,FCS) and overrunning couplers(adapters) (FAS).

4.For any other more special requirements with plastic guard, connection method, color of painting, package, etc., please feel free to let me know.

Features: 
1. We have been specialized in designing, manufacturing drive shaft, steering coupler shaft, universal joints, which have exported to the USA, Europe, Australia etc for years 
2. Application to all kinds of general mechanical situation 
3. Our products are of high intensity and rigidity. 
4. Heat resistant & Acid resistant 
5. OEM orders are welcomed

Our factory is a leading manufacturer of PTO shaft yoke and universal joint.

We manufacture high quality PTO yokes for various vehicles, construction machinery and equipment. All products are constructed with rotating lighter.

We are currently exporting our products throughout the world, especially to North America, South America, Europe, and Russia. If you are interested in any item, please do not hesitate to contact us. We are looking CHINAMFG to becoming your suppliers in the near future.

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Fork
Usage: Agricultural Products Processing, Farmland Infrastructure, Tillage, Harvester, Planting and Fertilization, Grain Threshing, Cleaning and Drying
Material: Carbon Steel
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

universal joint

How do you prevent premature wear in a universal joint?

Preventing premature wear in a universal joint is crucial for maintaining its performance, longevity, and reliability. Here’s a detailed explanation:

Several measures can be taken to prevent premature wear in a universal joint:

  1. Proper Lubrication: Adequate lubrication is essential for reducing friction, dissipating heat, and preventing premature wear in a universal joint. Regularly lubricating the joint with the recommended lubricant, such as grease or oil, helps to create a protective film between the moving parts, minimizing frictional losses and preventing metal-to-metal contact.
  2. Correct Alignment: Misalignment is a common cause of premature wear in a universal joint. Ensuring proper alignment between the shafts connected by the joint is crucial to distribute the load evenly and prevent excessive stress on the joint’s components. Misalignment can be minimized by using precision alignment techniques and checking the operating angles specified by the manufacturer.
  3. Appropriate Operating Angles: Universal joints have specified operating angles within which they can operate optimally. Operating the joint beyond these recommended angles can lead to increased wear and reduced lifespan. It is important to adhere to the manufacturer’s guidelines regarding the maximum allowable operating angles to prevent premature wear.
  4. Regular Maintenance: Implementing a regular maintenance schedule can help identify and address potential issues before they escalate into significant problems. Routine inspections of the universal joint, including checking for signs of wear, corrosion, or damage, can help detect any issues early on and allow for timely repairs or replacements.
  5. Proper Torque Capacity: Selecting a universal joint with an appropriate torque capacity for the specific application is essential for preventing premature wear. If the joint is subjected to torque levels exceeding its capacity, it can lead to excessive stress, deformation, and wear on the components. Ensuring that the selected joint can handle the expected loads and operating conditions is crucial.
  6. Quality Components: Using high-quality universal joint components, such as yokes, cross bearings, and needle bearings, can significantly contribute to preventing premature wear. Components made from durable materials with excellent strength and wear resistance properties are more likely to withstand the demanding conditions and provide longer service life.
  7. Avoiding Overloading: Overloading a universal joint beyond its rated capacity can lead to accelerated wear and failure. It is important to operate the joint within its specified load limits and avoid subjecting it to excessive torque or radial loads. Understanding the application requirements and ensuring that the joint is appropriately sized and rated for the intended load is crucial.

By following these preventive measures, it is possible to minimize premature wear in a universal joint, enhance its durability, and prolong its operational life. Regular maintenance, proper lubrication, correct alignment, and adherence to operating guidelines are key to ensuring optimal performance and preventing premature wear in universal joints.

universal joint

What is the effect of varying operating angles on the performance of a universal joint?

Varying operating angles can have a significant effect on the performance of a universal joint. Here’s a detailed explanation:

A universal joint is designed to transmit rotational motion between two shafts that are not collinear or have a constant angular relationship. The operating angle refers to the angle between the input and output shafts of the joint. The effects of varying operating angles on the performance of a universal joint are as follows:

  1. Changes in Torque and Speed: As the operating angle of a universal joint increases or decreases, the torque and speed transmitted through the joint can be affected. At small operating angles, the torque and speed transmission are relatively efficient. However, as the operating angle increases, the torque and speed capacity of the joint may decrease. This reduction in torque and speed capability is due to increased non-uniform loading and bending moments on the joint’s components.
  2. Increased Vibrations and Noise: Varying operating angles can introduce vibrations and noise in a universal joint. As the operating angle becomes more extreme, the joint experiences higher levels of dynamic imbalance and misalignment. This imbalance can lead to increased vibration levels, which may affect the overall performance and lifespan of the joint. Additionally, the non-uniform motion and increased stress on the joint’s components can generate additional noise during operation.
  3. Angular Misalignment Compensation: One of the primary advantages of universal joints is their ability to compensate for angular misalignment between shafts. By accommodating varying operating angles, the joint allows for flexibility in transmitting motion even when the input and output shafts are not perfectly aligned. However, extreme operating angles may challenge the joint’s ability to compensate for misalignment effectively. Very large operating angles can lead to increased wear, decreased joint life, and potential loss of motion transmission efficiency.
  4. Increased Wear and Fatigue: Varying operating angles can contribute to increased wear and fatigue on the universal joint’s components. As the operating angle increases, the joint experiences higher levels of stress and non-uniform loading. This stress concentration can lead to accelerated wear and fatigue, especially at critical areas such as the bearing caps and needle bearings. Continuous operation at extreme operating angles without proper lubrication and maintenance can significantly reduce the joint’s lifespan.
  5. Heat Generation: Extreme operating angles can result in increased heat generation within the universal joint. The non-uniform motion and increased friction caused by high operating angles can lead to elevated temperatures. Excessive heat can accelerate lubricant breakdown, increase wear rates, and potentially cause premature failure of the joint. Adequate cooling and proper lubrication are essential to mitigate the effects of heat generation in such cases.
  6. Efficiency and Power Loss: Varying operating angles can impact the overall efficiency of a universal joint. At small to moderate operating angles, the joint can transmit motion with relatively high efficiency. However, as the operating angle increases, the joint’s efficiency may decrease due to increased friction, bending moments, and non-uniform loading. This reduction in efficiency can result in power loss and decreased overall system performance.

Therefore, it is crucial to consider the effects of varying operating angles on the performance of a universal joint. Proper design, careful selection of operating angles within the joint’s specified limits, regular maintenance, and adherence to manufacturer guidelines can help mitigate the potential negative effects and ensure optimal performance and longevity of the joint.

universal joint

Can you provide examples of vehicles that use universal joints?

Universal joints are commonly used in various types of vehicles for transmitting torque between shafts that are not in a straight line or are at an angle to each other. Here are some examples of vehicles that use universal joints:

  • Automobiles: Universal joints are widely used in automobiles for transmitting torque from the engine to the rear wheels in rear-wheel drive vehicles. They are commonly found in the driveline, connecting the transmission or gearbox to the driveshaft, and in the driveshaft itself. Universal joints are also used in front-wheel drive vehicles for transmitting torque from the transaxle to the front wheels.
  • Trucks and commercial vehicles: Universal joints are utilized in trucks and commercial vehicles for transmitting torque between various components of the drivetrain. They can be found in the driveshaft, connecting the transmission or gearbox to the rear differential or axle assembly.
  • Off-road vehicles and SUVs: Universal joints are extensively used in off-road vehicles and SUVs that have four-wheel drive or all-wheel drive systems. They are employed in the driveline to transmit torque from the transmission or transfer case to the front and rear differentials or axle assemblies.
  • Military vehicles: Universal joints are utilized in military vehicles for transmitting torque between different components of the drivetrain, similar to their use in trucks and off-road vehicles. They provide reliable torque transfer in demanding off-road and rugged environments.
  • Agricultural and construction machinery: Universal joints are commonly found in agricultural and construction machinery, such as tractors, combines, excavators, loaders, and other heavy equipment. They are used in the drivelines and power take-off (PTO) shafts to transmit torque from the engine or motor to various components, attachments, or implements.
  • Marine vessels: Universal joints are employed in marine vessels for transmitting torque between the engine and the propeller shaft. They are used in various types of watercraft, including boats, yachts, ships, and other marine vessels.
  • Aircraft: Universal joints are utilized in certain aircraft applications, such as helicopters, to transmit torque between the engine and the rotor assembly. They allow for angular displacement and smooth transmission of power in the complex rotor systems of helicopters.
  • Industrial machinery: Universal joints find applications in various types of industrial machinery, including manufacturing equipment, conveyors, pumps, and other power transmission systems. They enable torque transmission between non-aligned or angularly displaced shafts in industrial settings.

Please note that the specific usage of universal joints may vary depending on the vehicle design, drivetrain configuration, and application requirements. Different types of universal joints, such as single joint, double joint, constant velocity (CV) joint, or Cardan joint, may be employed based on the specific needs of the vehicle or machinery.

China wholesaler Widely Used Pto Shaft Cross Universal Joint for Farm Tractor Inner Tubes  China wholesaler Widely Used Pto Shaft Cross Universal Joint for Farm Tractor Inner Tubes
editor by CX 2024-02-16

China wholesaler Wuxi CZPT Brand Cardan Shaft Spare Parts Universal Joint

Product Description

HangZhou Xihu (West Lake) Dis. Brand Cardan Shaft Spare Parts Universal Joint 

Brief Introduction

Processing flow

                                                                                                                                                                                                                                                                            
Quality Control                                                                                                                                                                                               

       
      

               
 

Packaging & Delivery

Packaging details:Standard plywood case

Delivery detail: 3-15 working days,depend on the actual produce condition

 

FAQ

Q1: What is the location of your company?

A1: Our company is located in the HangZhou City ,ZheJiang ,China.Welcome to visit our factory at anytime!

 

Q2: How does your factory do regarding quality control?

A2: Our standard QC system to control quality.

 

Q3: What is your delivery time?

A3: Usually within 20 days after the receipt of payment.Delivery time must depend on the actual produce condition.

 

Q4: What are your strengths?

A4: 1.We are the manufacturer,having competitive advantage in price.

 

2.A large part of money is put into advancing CNC equipments and product

R&D department annual,the performance of cardan shaft can be guaranteed.

 

3.About quality issues or follow-up after-sales service,we report directly to the boss.

Specification

There is no uniform standard for the specifications of cross assemblies. Please contact us directly for confirmation.

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Color: Silver
Certification: ISO, BV
Structure: Cross
Material: Forging
Type: Cross
Customization:
Available

|

Customized Request

cardan shaft

How does a cardan joint affect the overall efficiency of a system?

A cardan joint can have an impact on the overall efficiency of a system in several ways. While it offers the ability to transmit rotational motion between misaligned shafts, there are factors to consider that can affect the efficiency of the system. Here’s a detailed explanation of how a cardan joint can influence overall system efficiency:

  • Power Transmission Efficiency: Cardan joints introduce mechanical connections and moving parts into the system, which can result in power losses due to friction, backlash, and misalignment. These losses can reduce the overall power transmission efficiency of the system. The efficiency can be further affected by the condition of the joint, such as wear, lubrication, and alignment. Regular maintenance, proper lubrication, and minimizing misalignment can help mitigate power losses and improve efficiency.
  • Angular Limitations: Cardan joints have specific angular operating ranges within which they can effectively transmit power. Operating the joint beyond these limits can result in increased friction, binding, and reduced efficiency. It is important to ensure that the operating angles of the joint are within the manufacturer’s specified range to maintain optimal efficiency. In cases where large operating angles are required, alternative coupling mechanisms or constant velocity joints may be more efficient options.
  • Vibration and Imbalance: Cardan joints introduce additional components and connections, which can contribute to increased vibration and imbalance in the system. Vibrations can result in energy losses and reduced efficiency. Imbalance can cause uneven loading on the connected components, leading to increased wear and decreased efficiency. Proper balancing of the joint and the connected components, as well as monitoring and addressing excessive vibrations, are important for maintaining system efficiency.
  • Maintenance and Lubrication: The efficiency of a system utilizing a cardan joint can be influenced by the maintenance practices and lubrication of the joint. Insufficient or improper lubrication can increase friction and wear, leading to reduced efficiency. Regular maintenance, including lubrication, inspection for wear, and alignment checks, is essential for optimal joint performance and efficiency. Following the manufacturer’s recommendations and guidelines for maintenance can help ensure maximum efficiency.
  • System Integration and Design: The overall efficiency of a system also depends on the integration and design considerations of the cardan joint. Proper alignment, minimizing misalignment, and optimizing the selection and sizing of the joint and connected components are crucial for achieving efficient power transmission. Careful system design, including the selection of appropriate shafts, bearings, and supporting structures, can contribute to minimizing energy losses and improving overall efficiency.
  • Application-Specific Factors: The impact of a cardan joint on system efficiency can vary depending on the specific application and operating conditions. Factors such as load requirements, rotational speeds, operating environment, and duty cycles can influence the efficiency of the system. It is important to consider these application-specific factors and evaluate the suitability of a cardan joint in terms of its ability to meet the efficiency requirements of the system.

Considering these factors and implementing appropriate measures, such as regular maintenance, proper lubrication, alignment checks, and system optimization, can help mitigate the potential efficiency drawbacks of a cardan joint and ensure the optimal performance of the overall system.

cardan shaft

Can cardan joints be used in conveyor systems?

Yes, cardan joints can be used in conveyor systems, and they offer several advantages in certain applications. Cardan joints, also known as universal joints, are versatile mechanical couplings that provide flexibility in transmitting torque and accommodating misalignments between rotating shafts. Here’s a detailed explanation of the use of cardan joints in conveyor systems:

Conveyor systems are widely used in various industries for the efficient movement of bulk materials, goods, or components. These systems consist of multiple components, including conveyor belts, pulleys, rollers, and drive systems, that work together to transport materials from one location to another.

Cardan joints can be integrated into conveyor systems to enable torque transmission and accommodate misalignments in certain parts of the system. Here are some key considerations and advantages of using cardan joints in conveyor systems:

  1. Misalignment Compensation: Conveyor systems often require flexibility to accommodate misalignments between different components, such as pulleys and drive shafts. Cardan joints provide a flexible coupling solution that can handle angular, parallel, and axial misalignments, allowing smooth operation and minimizing stress on the system.
  2. Torque Transmission: Cardan joints are designed to transmit torque between shafts that are not aligned. In conveyor systems, they can be used to connect the drive shaft to the pulleys or rollers, allowing torque to be efficiently transferred throughout the system. This enables the movement of the conveyor belt and facilitates the transportation of materials along the desired path.
  3. Compact Design: Cardan joints offer a compact and space-saving design, making them suitable for conveyor systems with limited space constraints. Their small size allows for efficient integration into the system without compromising its overall footprint.
  4. High Load Capacity: Conveyor systems often handle significant loads, and the components must be capable of withstanding these loads. Cardan joints are designed to handle high torque and can transmit substantial loads, making them suitable for conveyor systems that require robust and reliable torque transmission.
  5. Variable Speed and Direction: Cardan joints provide the ability to transmit torque at various angles, allowing conveyor systems to operate at different speeds and change direction if needed. This flexibility allows for versatility in conveyor system design and adaptability to different material handling requirements.
  6. Reduced Vibrations and Noise: Cardan joints can help dampen vibrations and reduce noise levels in conveyor systems. The flexible coupling nature of the joint absorbs and dampens vibrations caused by the operation of the system, resulting in smoother and quieter performance.
  7. Application-Specific Considerations: The use of cardan joints in conveyor systems requires careful consideration of specific application requirements, such as the type of material being transported, system layout, operating conditions, and load characteristics. Proper selection of the cardan joint size, materials, lubrication, and maintenance practices is essential to ensure optimal performance and reliability.

It is worth noting that while cardan joints can offer advantages in certain conveyor system applications, other types of couplings or drive systems may be more suitable depending on the specific requirements and constraints of the system. Consulting with engineers and industry experts can help determine the most appropriate coupling solution for a given conveyor system.

cardan shaft

How do you choose the right size cardan joint for your application?

Choosing the right size cardan joint for your application is crucial to ensure optimal performance, reliability, and longevity. Several factors need to be considered when selecting the appropriate size of a cardan joint. Here’s a detailed explanation of the key considerations:

  1. Load Capacity: Determine the maximum load that the cardan joint will need to transmit. Consider both the torque (rotational force) and the axial load (thrust) that will be applied to the joint. The load capacity of the cardan joint should exceed the maximum expected loads in your application to ensure safe and reliable operation.
  2. Operating Speed: Consider the rotational speed at which the cardan joint will be operating. Higher speeds may require specific design considerations, such as balancing, lubrication, and material selection, to ensure smooth operation and avoid premature wear or failure. Verify that the selected cardan joint is rated for the intended operating speed range.
  3. Shaft Diameter: Measure the diameter of the input and output shafts that will be connected by the cardan joint. The cardan joint should have yokes and bearings that match the shaft diameter to ensure a proper fit and reliable power transmission. It is essential to consider both shaft diameters when selecting a cardan joint.
  4. Misalignment Angle: Determine the maximum expected misalignment angle between the input and output shafts. Different types of cardan joints have different capabilities to accommodate misalignment. Consider the angular misalignment and choose a cardan joint that can handle the required range of misalignment angles in your application.
  5. Environmental Factors: Evaluate the operating environment of the cardan joint. Consider factors such as temperature, humidity, dust, chemicals, and vibration. Choose a cardan joint that is suitable for the specific environmental conditions to ensure proper functioning and longevity.
  6. Service Life and Maintenance: Consider the expected service life of the cardan joint and the maintenance requirements. Some applications may require frequent maintenance or periodic lubrication of the joint. Evaluate the ease of maintenance and factor it into your selection process.
  7. Standards and Regulations: Depending on your industry or application, there may be specific standards or regulations that dictate the requirements for cardan joints. Ensure that the selected cardan joint complies with the relevant standards and regulations for your application.

It is advisable to consult with a knowledgeable supplier or engineer specializing in power transmission components to assist you in selecting the right size cardan joint for your specific application. They can consider all the relevant factors and provide guidance to ensure optimal performance and reliability of the cardan joint in your application.

China wholesaler Wuxi CZPT Brand Cardan Shaft Spare Parts Universal Joint  China wholesaler Wuxi CZPT Brand Cardan Shaft Spare Parts Universal Joint
editor by CX 2024-01-29

China wholesaler OEM Universal Joint Kb-5153-00 Cardan Drive Shaft Coupling 30X88X50

Product Description

Features
1.Many sizes available
2.Max. angle 45 degree
3.Max. speed 1000 rpm
4.Available in various materials
5.All subcomponents very precisely machined from bar: No cheap castings or powdered metal parts, resulting in better overall and more consistent performance
6.Several subtle design innovations that optimize performance and reduce cost
7.Could manufacture products according to your drawing
Advantages
1.Application to all kinds of general mechanical situation, maximum rotate speed may reach1000~1500r/min.Our Universal Joint widely used in multiaxle drilling machine ,construction machine,packaging machine,automobile.parking facility and paper machine,medical machine,farm machine.
2.Have single -jointed type and bimodal type.
3.Each point of the largest rotation angle can be 45o.
4.Needle roller bearing,maintenance-free.
5.The hole on the finshed product tolerance is H7 according to spline , hexagonal and square hole are available as long as you request.

 

Variations offered
1.Materials for midsection(Cube and Pin): 20Cr,40Cr
2.Materials for hub: 40Cr,45#steel
3. Materials for spline: 45#steel
4.Quick-Change universal joint(Nature color)

Packing&Shipping
Package Standard suitable package / Pallet or container.
Polybag inside export carton outside, blister and Tape and reel package available.
If customers have specific requirements for the packaging, we will gladly accommodate.
Shipping 10-20working days ofter payment receipt comfirmed (based on actual quantity).
Packing standard export packing or according to customers demand.
Professional goods shipping forward.

 About MIGHTY

ZheJiang Mighty Machinery Co., Ltd. specializes in manufacturing Mechanical Power Transmission Products.We Mighty is the division/branch of SCMC Group, which is a wholly state-owned company, established in 1980.
About Mighty:
-3 manufacturing factories, we have 5 technical staff, our FTY have strong capacity for design and process design, and more than 70 workers and double shift eveyday.
-Large quality of various material purchase and stock in warhouse which ensure the low cost for the material and production in time.
-Strick quality control are apply in the whole production. 
we have incoming inspection,process inspection and final production inspection which can ensure the perfect of the goods quality.
-14 years of machining experience. Long time cooperate with the Global Buyer, make us easy to understand the csutomer and handle the export. MIGHTY’s products are mainly exported to Europe, America and the Middle East market. With the top-ranking management, professional technical support and abundant export experience, MIGHTY has established lasting and stable business partnership with many world famous companies and has got good reputation from CHINAMFG customers in international sales.

FAQ
Q: Are you trading company or manufacturer?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit. To supply customers excellent quality products with good price and punctual delivery time is our responsibility. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Technical Support
Warranty: 1 Year
Condition: New
Color: Natural Color, Silver, Black
Certification: CE, DIN, ISO
Structure: Single or Double
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

cardan shaft

How do you calculate the operating angles of a cardan joint?

The operating angles of a cardan joint can be calculated based on the angular misalignment between the input and output shafts. The operating angles are crucial for determining the joint’s performance and ensuring its proper functioning. Here’s a detailed explanation of how to calculate the operating angles of a cardan joint:

  1. Identify the Shaft Axes: Begin by identifying the axes of the input and output shafts connected by the cardan joint. These axes represent the rotational axes of the shafts.
  2. Measure the Angular Misalignments: Measure the angular misalignments between the shaft axes. The misalignments are typically measured in terms of angles, such as angular displacement in degrees or radians. There are three types of misalignments to consider:
    • Angular Misalignment (α): This refers to the angular difference between the two shaft axes in the horizontal plane (X-Y plane).
    • Parallel Misalignment (β): Parallel misalignment represents the offset or displacement between the two shaft axes in the vertical plane (Z-axis).
    • Axial Misalignment (γ): Axial misalignment refers to the shift or displacement of one shaft along its axis with respect to the other shaft.
  3. Calculate the Operating Angles: Once the misalignments are measured, the operating angles can be calculated using trigonometric functions. The operating angles are:
    • Operating Angle (θ): The operating angle is the total angular misalignment between the input and output shafts. It is calculated as the square root of the sum of the squares of the individual misalignments:

These calculated operating angles provide valuable information about the misalignment and geometry of the cardan joint. They help in selecting the appropriate joint size, determining the joint’s torque capacity, assessing potential operating issues, and ensuring proper installation and alignment of the joint within the system.

It is important to note that these calculations assume small operating angles and neglect any elastic deformation or non-linearities that may occur in the joint. In cases where larger operating angles or more precise calculations are required, advanced engineering techniques or software tools specific to cardan joint analysis may be employed.

cardan shaft

What are the safety considerations when working with cardan joints?

Working with cardan joints requires careful attention to safety to prevent accidents, injuries, and equipment damage. Cardan joints are mechanical components used for torque transmission and misalignment compensation, and they operate under various loads and conditions. Here are important safety considerations to keep in mind when working with cardan joints:

  1. Proper Training and Knowledge: Ensure that individuals working with cardan joints have proper training and understanding of their operation, installation, and maintenance. Adequate knowledge of safe working practices, procedures, and potential hazards associated with cardan joints is crucial.
  2. Personal Protective Equipment (PPE): Use appropriate personal protective equipment, such as safety glasses, gloves, and protective clothing, when handling cardan joints. PPE protects against potential hazards like flying debris, sharp edges, or accidental contact with rotating components.
  3. Lockout/Tagout: Before performing any maintenance or repair work involving cardan joints, follow lockout/tagout procedures to isolate and de-energize the system. This prevents accidental startup or movement of machinery, ensuring the safety of personnel working on or near the cardan joints.
  4. Secure Mounting and Fastening: Ensure that cardan joints are securely mounted and properly fastened to prevent unexpected movement or dislodgment during operation. Loose joints or fasteners can lead to component failure, sudden movements, or damage to other parts of the system.
  5. Torque and Load Limits: Adhere to the recommended torque and load limits specified by the manufacturer for the cardan joints. Exceeding these limits can result in premature wear, deformation, or failure of the joints, posing safety risks and compromising the overall system’s functionality.
  6. Regular Inspection and Maintenance: Implement a regular inspection and maintenance program for the cardan joints. Inspect for signs of wear, damage, or misalignment, and address any issues promptly. Lubricate the joints according to the manufacturer’s recommendations to ensure smooth operation and prevent excessive friction or overheating.
  7. Safe Handling and Lifting: When handling or lifting cardan joints, use appropriate lifting equipment and techniques. Cardan joints can be heavy, and improper lifting can lead to strain or injuries. Ensure that lifting devices have the capacity to handle the weight of the joints safely.
  8. Avoid Contact with Rotating Components: Never reach into or make contact with rotating components of a system that incorporates cardan joints while the system is in operation. Keep loose clothing, jewelry, and other items away from moving parts to prevent entanglement or injury.
  9. Proper Disposal of Used or Damaged Joints: Follow proper disposal procedures for used or damaged cardan joints. Consult local regulations and guidelines for the disposal of mechanical components to minimize environmental impact and ensure compliance with safety and waste management standards.
  10. Manufacturer’s Guidelines: Always refer to and follow the manufacturer’s guidelines, instructions, and warnings specific to the cardan joints being used. Manufacturers provide important safety information, installation procedures, and maintenance recommendations specific to their products.

By addressing these safety considerations, individuals can mitigate potential risks associated with working with cardan joints, promote a safe working environment, and ensure the reliable and efficient operation of the systems they are integrated into.

cardan shaft

What is a cardan joint and how does it work?

A cardan joint, also known as a universal joint or U-joint, is a mechanical coupling used to transmit rotational motion between two shafts that are not collinear or have a constant angular relationship. It provides flexibility and accommodates misalignment between the shafts. Here’s a detailed explanation of how a cardan joint works:

A cardan joint consists of three main components: two yokes and a cross-shaped member called the cross or spider. The yokes are attached to the ends of the shafts that need to be connected, while the cross sits in the center, connecting the yokes.

The cross has four arms that intersect at a central point, forming a cross shape. Each arm has a bearing surface or trunnion on which the yoke of the corresponding shaft is mounted. The yokes are typically fork-shaped and have holes or bearings to accommodate the trunnions of the cross.

When the input shaft rotates, it transfers the rotational motion to one of the yokes. The cross, being connected to both yokes, transmits this motion to the other yoke and subsequently to the output shaft.

The key feature of a cardan joint is its ability to accommodate misalignment between the input and output shafts. This misalignment can be angular, axial, or both. As the input and output shafts are not collinear, the angles between the shafts cause the yokes to rotate at different speeds during operation.

The universal joint’s design allows the cross to rotate freely within the yokes, while still transferring motion from one shaft to the other. When the input shaft rotates, the yoke connected to it rotates with the shaft. This rotation causes the cross to tilt, as the other yoke is fixed to the output shaft. As a result, the angle between the arms of the cross changes, allowing for the compensation of misalignment.

As the cross tilts, the relative speeds of the yokes change, but the rotational motion is still transferred to the output shaft. The cardan joint effectively converts the input shaft’s rotation into a modified rotation at the output shaft, accommodating the misalignment between the two shafts.

It’s important to note that while cardan joints provide flexibility and can handle misalignment, they introduce certain limitations. These include non-uniform motion, increased vibration, backlash, and potential loss of efficiency at extreme operating angles. Regular maintenance, proper lubrication, and adherence to manufacturer guidelines are essential to ensure the optimal performance and longevity of cardan joints.

China wholesaler OEM Universal Joint Kb-5153-00 Cardan Drive Shaft Coupling 30X88X50  China wholesaler OEM Universal Joint Kb-5153-00 Cardan Drive Shaft Coupling 30X88X50
editor by CX 2024-01-25

China wholesaler New Ccr or Private Label Cardan Shaft Outer CV Joint, with DIN

Product Description

      ABS Ring Included: No

Axle Nut Locking Type: Self Lock

Axle Nut Supplied: Yes

Compressed Length: 21 1/4″

CV Axles Inboard Spline Count: 26

Emission Code : 1

Inboard Joint Type: Female

Input Shaft Connection Style: Spline

Input Shaft Spline Count: 26

Interchange Part Number: , GM-8047, 179047, GM-6120, GM6120, 9456N

Label Description – 80: New Constant Velocity Drive Axle

Length Measurement Method: Compressed

Life Cycle Status Code: 2

Life Cycle Status Description: Available to Order

Maximum Cases per Pallet Layer: 10

MSDS Required Flag: N

National Popularity Code : B

National Popularity Description: Next 20% of Product Group Sales Value

New or Remanufactured: New

Nut Head Size: 36mm Hex Head

Nut Length: OAH 20.8mm

Nut Locking Type: Self Lock

Nut Thread Size: M24 x 2.0

Other Part Number: 815-5270, GM-8232, 80-1507, , 80571

Outboard Joint Type: Male

Outboard Spline Count: 27

Output Shaft Connection Style: Spline

Output Shaft Spline Count: 27

Overall Length: 21 1/4″

Pallet Layer Maximum: 6

Product Condition: New

Product Description – Invoice – 40: CV Drive Axle New

Product Description – Long – 80: CV Drive Axle – Domestic New

Product Description – Short – 20: CV Drive Axle

Remanufactured Part: N

Spindle Nut Hex Head Size: 36mm

Spindle Nut Included: Yes

Spindle Nut Thread Size: M24 x 2.0

Drive Shaft | PATRON : PDS1507

  • Fitting Position: Front Axle Right

REF NO.

FactoryNumber

GSP208050

OE Number

MakeNumber

GMC93720063

MakeNumber

GMC

MakeNumber

ISUZU

After-sales Service: Available
Condition: New
Certification: DIN, ISO, ISO, DIN
Type: C.V. Joint
Application Brand: GM
Material: Steel
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

cardan shaft

Can cardan joints be used in both horizontal and vertical orientations?

Yes, cardan joints can be used in both horizontal and vertical orientations. Cardan joints, also known as universal joints, are flexible mechanical couplings that transmit torque between misaligned shafts. Their design allows for angular movement and compensation of misalignments in various orientations. Here’s a detailed explanation of how cardan joints can be used in both horizontal and vertical orientations:

Horizontal Orientation: In a horizontal orientation, the input and output shafts of the cardan joint are aligned horizontally, typically parallel to the ground. The joint is capable of transmitting torque smoothly and efficiently between the misaligned shafts while accommodating angular, parallel, and axial misalignments. This makes it suitable for a wide range of horizontal applications, including automotive drivetrains, industrial machinery, and agricultural equipment.

Vertical Orientation: In a vertical orientation, the input and output shafts of the cardan joint are aligned vertically, with one shaft positioned above the other. The joint is still capable of transmitting torque and compensating for misalignments in this configuration. However, it is important to consider the effects of gravity and the additional load imposed on the joint due to the weight of the shafts and any connected components. Adequate support and proper bearing selection should be considered to ensure reliable operation in vertical applications.

Whether in horizontal or vertical orientations, cardan joints offer several advantages that make them versatile for various applications:

  • Misalignment Compensation: Cardan joints excel at compensating for angular, parallel, and axial misalignments between shafts. This flexibility allows for smooth torque transmission and reduces stress on the connected components.
  • Torque Transmission: Cardan joints are capable of transmitting high levels of torque between misaligned shafts. This makes them suitable for applications that require the transfer of substantial power.
  • Durability: Cardan joints are typically constructed from durable materials, such as alloy steels, which provide excellent strength and resistance to fatigue and wear. This durability enables them to withstand the demands of various orientations and operating conditions.
  • Compact Design: Cardan joints have a compact design, allowing for efficient installation and integration within the system, regardless of the orientation. This is particularly advantageous in applications with space constraints.
  • Versatility: Cardan joints are available in various sizes and configurations to accommodate different orientations and applications. They can be customized to meet specific torque and speed requirements.

It is important to note that specific considerations may apply depending on the application and the magnitude of misalignments. Factors such as load capacity, lubrication, bearing arrangement, and maintenance should be taken into account to ensure optimal performance and longevity of the cardan joint.

In summary, cardan joints can be used in both horizontal and vertical orientations due to their ability to compensate for misalignments and transmit torque between shafts. Their versatility, durability, and compact design make them suitable for a wide range of applications in various orientations.

cardan shaft

Can cardan joints be used in robotics and automation?

Yes, cardan joints can be used in robotics and automation applications, depending on the specific requirements and constraints of the system. Cardan joints offer certain advantages and considerations that make them suitable for certain robotic and automation tasks. Here’s a detailed explanation:

1. Flexibility and Misalignment Compensation: Cardan joints are designed to accommodate misalignment between rotating shafts. In robotics and automation, where multiple axes of movement are often involved, cardan joints can provide the necessary flexibility to handle misalignments and angular variations. They can compensate for misalignments resulting from assembly tolerances, thermal expansion, or mechanical deflections, allowing smooth and continuous motion.

2. Torque Transmission: Cardan joints are capable of transmitting torque between shafts at various angles. In robotics and automation, where power needs to be transferred between different components or joints, cardan joints can efficiently transmit torque, even when the shafts are not perfectly aligned. This enables the robot or automated system to perform complex tasks involving multi-axis motion and power transmission.

3. Rotational Freedom: Cardan joints provide rotational freedom and allow for angular movement. This is advantageous in robotics and automation applications where the system requires articulation and maneuverability. The universal joint design of cardan joints allows for smooth rotation and enables the robot or automated system to reach different orientations and perform tasks in various configurations.

4. Compact Design: Cardan joints have a relatively compact design, which can be beneficial in space-constrained robotics and automation setups. The compact size allows for efficient integration into robotic arms, end-effectors, or other automated mechanisms, minimizing the overall footprint and maximizing the utilization of available space.

5. Considerations for Precision and Backlash: When considering the use of cardan joints in robotics and automation, it’s important to account for precision requirements. Cardan joints have inherent clearances or play, which can introduce backlash and affect the system’s accuracy. In applications where high precision is crucial, additional measures such as backlash compensation mechanisms or precision-aligned cardan joints may be necessary.

It’s important to note that the suitability of cardan joints in robotics and automation depends on the specific application requirements, load conditions, precision needs, and other factors. Careful evaluation, system design, and integration are necessary to ensure that the cardan joints function optimally and meet the desired performance criteria.

When considering the use of cardan joints in robotics and automation, it is advisable to consult with engineers or experts specializing in robotics, automation, and power transmission systems. They can provide valuable insights and guidance on the selection, integration, and maintenance of cardan joints for specific robotic and automation applications.

cardan shaft

What are the applications of a cardan joint?

A cardan joint, also known as a universal joint or U-joint, has a wide range of applications across various industries. Its ability to transmit rotational motion and accommodate misalignment between shafts makes it suitable for different systems and machines. Here’s a detailed explanation of the applications of a cardan joint:

  • Automotive Drivetrains: One of the primary applications of cardan joints is in automotive drivetrains. They are used in vehicles with rear-wheel drive, all-wheel drive, and four-wheel drive systems. Cardan joints help transmit power from the engine to the driveshaft, allowing the rotational motion to be transferred to the rear axle or all four wheels. They provide flexibility and compensation for misalignment between the engine, transmission, and rear differential.
  • Industrial Machinery: Cardan joints find extensive use in various industrial machinery applications. They are commonly employed in power transmission systems, especially when there is a need to transmit rotational motion between non-collinear shafts. Cardan joints are used in conveyor systems, printing presses, machine tools, pumps, mixers, and many other industrial machines that require efficient transmission of rotational power.
  • Aerospace and Aviation: Cardan joints have applications in the aerospace and aviation industries. They are used in aircraft control systems, such as the control linkages between the control surfaces (elevator, rudder, ailerons) and the cockpit controls. Cardan joints allow for the transmission of pilot input to the control surfaces while accommodating any misalignment or changes in angles during flight.
  • Marine Propulsion: In marine applications, cardan joints are utilized in propulsion systems. They are commonly used in boat drivetrains to transfer rotational motion from the engine to the propeller shaft. Cardan joints enable the engine to be mounted at an angle or in a different position from the propeller shaft, compensating for the misalignment that can arise due to the boat’s hull shape and design.
  • Railway Systems: Cardan joints play a role in railway systems, particularly in drivetrains and couplings. They are used in locomotives and train cars to transfer rotational motion between different components, such as the engine, gearbox, and wheel axle. Cardan joints provide flexibility and accommodate misalignment that may occur due to the movement and articulation of train cars on curved tracks.
  • Mining and Construction Equipment: Cardan joints are employed in heavy-duty mining and construction equipment. They are used in applications such as excavators, loaders, bulldozers, and off-highway trucks. Cardan joints help transmit power and motion between different components of these machines, allowing them to operate efficiently and withstand the demanding conditions of mining and construction environments.
  • Industrial Robotics: Cardan joints find applications in industrial robotics and automation. They are used in robotic arms and manipulators to transmit rotational motion between different segments or joints of the robotic system. Cardan joints enable precise and flexible movement, allowing robots to perform complex tasks in manufacturing, assembly, and other industrial processes.

These are just a few examples of the diverse applications of cardan joints. Their ability to handle misalignment, transmit rotational motion at varying angles, and provide flexibility make them a fundamental component in numerous systems and machines across industries.

China wholesaler New Ccr or Private Label Cardan Shaft Outer CV Joint, with DIN  China wholesaler New Ccr or Private Label Cardan Shaft Outer CV Joint, with DIN
editor by CX 2023-12-04

China wholesaler Transmission Shaft Truck Manual Transmission Gearbox Main Shaft for Truck near me manufacturer

Item Description

Huihong Car elements Co, . Ltd was set in 2001, it is a skilled factory that mainly produces automobile elements, concrete pump elements and contruction machinery components. In previous twenty years, our compary devotes by itself to the manufacture and advancement of the pasrt of transmission, suspension and the fitting of reinforce.

Our items sell properly not only on international markets but also on Chinese ones. Areas of themare employed by consumersand dealers. In these years. Our organization imports technological innovation continually, enlarges th expenditure, renews the equipments, tries to increase the top quality, the visual appeal and the technology of products. Ww primarily promote the fiting of a lot of kinds of

Vehicle components: Japanese: MITSUBISHI, HINO, Nissan, ISUZU Korea: HYUNDAI, KIA. DAEWOO And parts of Chinese series, and the fitings of the European collection.

Concrete pump areas: Chinese: SANY, ZOOMLION, XCMG Korea: JUNJIN, KCP, EVERDIGM Germany: PM.

HuiHong firm follows the selling thought of “Good quality and what consumers require are the most critical issue to us, comstantly increase our shill”. We also welcome traders all in excess of the globe to come to our caompany and talk about enterprise with each other.
 

 

If you have any questions, make sure you speak to us.

Q1. Are you a producer or trading organization?
A:We are a producer with self-export legal rights. 

Q2. What are your terms of packing?
A: Typically, we pack our goods in neutral white bins and brown cartons, picket containers. If you have legally registered a patent, 
we can pack the items in your branded boxes after obtaining your authorization letters.

Q3. What is your phrases of payment?
A: T/T 30% as deposit, and 70% before shipping and delivery. We are going to demonstrate you the photos of the merchandise and packages 
ahead of you spend the equilibrium.

Q4. How about your delivery time?
A: Typically, it will take 15 to 30 days after receiving your progress payment. The certain supply time depends 
on the things and the amount of your order.

Q5. Can you create in accordance to the samples?
A: Indeed, we can produce by your samples or specialized drawings. We can build the molds and fixtures.

Q6.  Do you check all your merchandise prior to shipping and delivery?
 A: Of course, we have a hundred% examination prior to supply

Q7:  How do you make our enterprise lengthy-phrase and good partnership?
A:1. We preserve excellent high quality and competitive cost to guarantee our customers advantage
two. We regard each and every customer as our good friend and we sincerely do business and make friends with them, 
no subject exactly where they come from.

Product Name Drive Shaft Or Propeller Shaft
Application drive shaft proper shaft cardan shaft for Howo Camc Shacman dongfeng Scania Volvo Benz MAN Hino Mitsubishi Isuzu trucks and other brands
 
Machinery Test Report Provided
Video outgoing-inspection Provided
Size Customized
Quality Original & OEM
Product Name Drive Shaft Or Propeller Shaft
Application drive shaft proper shaft cardan shaft for Howo Camc Shacman dongfeng Scania Volvo Benz MAN Hino Mitsubishi Isuzu trucks and other brands
 
Machinery Test Report Provided
Video outgoing-inspection Provided
Size Customized
Quality Original & OEM

Guide to Drive Shafts and U-Joints

If you’re concerned about the performance of your car’s driveshaft, you’re not alone. Many car owners are unaware of the warning signs of a failed driveshaft, but knowing what to look for can help you avoid costly repairs. Here is a brief guide on drive shafts, U-joints and maintenance intervals. Listed below are key points to consider before replacing a vehicle driveshaft.
air-compressor

Symptoms of Driveshaft Failure

Identifying a faulty driveshaft is easy if you’ve ever heard a strange noise from under your car. These sounds are caused by worn U-joints and bearings supporting the drive shaft. When they fail, the drive shafts stop rotating properly, creating a clanking or squeaking sound. When this happens, you may hear noise from the side of the steering wheel or floor.
In addition to noise, a faulty driveshaft can cause your car to swerve in tight corners. It can also lead to suspended bindings that limit overall control. Therefore, you should have these symptoms checked by a mechanic as soon as you notice them. If you notice any of the symptoms above, your next step should be to tow your vehicle to a mechanic. To avoid extra trouble, make sure you’ve taken precautions by checking your car’s oil level.
In addition to these symptoms, you should also look for any noise from the drive shaft. The first thing to look for is the squeak. This was caused by severe damage to the U-joint attached to the drive shaft. In addition to noise, you should also look for rust on the bearing cap seals. In extreme cases, your car can even shudder when accelerating.
Vibration while driving can be an early warning sign of a driveshaft failure. Vibration can be due to worn bushings, stuck sliding yokes, or even springs or bent yokes. Excessive torque can be caused by a worn center bearing or a damaged U-joint. The vehicle may make unusual noises in the chassis system.
If you notice these signs, it’s time to take your car to a mechanic. You should check regularly, especially heavy vehicles. If you’re not sure what’s causing the noise, check your car’s transmission, engine, and rear differential. If you suspect that a driveshaft needs to be replaced, a certified mechanic can replace the driveshaft in your car.
air-compressor

Drive shaft type

Driveshafts are used in many different types of vehicles. These include four-wheel drive, front-engine rear-wheel drive, motorcycles and boats. Each type of drive shaft has its own purpose. Below is an overview of the three most common types of drive shafts:
The driveshaft is a circular, elongated shaft that transmits torque from the engine to the wheels. Drive shafts often contain many joints to compensate for changes in length or angle. Some drive shafts also include connecting shafts and internal constant velocity joints. Some also include torsional dampers, spline joints, and even prismatic joints. The most important thing about the driveshaft is that it plays a vital role in transmitting torque from the engine to the wheels.
The drive shaft needs to be both light and strong to move torque. While steel is the most commonly used material for automotive driveshafts, other materials such as aluminum, composites, and carbon fiber are also commonly used. It all depends on the purpose and size of the vehicle. Precision Manufacturing is a good source for OEM products and OEM driveshafts. So when you’re looking for a new driveshaft, keep these factors in mind when buying.
Cardan joints are another common drive shaft. A universal joint, also known as a U-joint, is a flexible coupling that allows one shaft to drive the other at an angle. This type of drive shaft allows power to be transmitted while the angle of the other shaft is constantly changing. While a gimbal is a good option, it’s not a perfect solution for all applications.
CZPT, Inc. has state-of-the-art machinery to service all types of drive shafts, from small cars to race cars. They serve a variety of needs, including racing, industry and agriculture. Whether you need a new drive shaft or a simple adjustment, the staff at CZPT can meet all your needs. You’ll be back on the road soon!

U-joint

If your car yoke or u-joint shows signs of wear, it’s time to replace them. The easiest way to replace them is to follow the steps below. Use a large flathead screwdriver to test. If you feel any movement, the U-joint is faulty. Also, inspect the bearing caps for damage or rust. If you can’t find the u-joint wrench, try checking with a flashlight.
When inspecting U-joints, make sure they are properly lubricated and lubricated. If the joint is dry or poorly lubricated, it can quickly fail and cause your car to squeak while driving. Another sign that a joint is about to fail is a sudden, excessive whine. Check your u-joints every year or so to make sure they are in proper working order.
Whether your u-joint is sealed or lubricated will depend on the make and model of your vehicle. When your vehicle is off-road, you need to install lubricable U-joints for durability and longevity. A new driveshaft or derailleur will cost more than a U-joint. Also, if you don’t have a good understanding of how to replace them, you may need to do some transmission work on your vehicle.
When replacing the U-joint on the drive shaft, be sure to choose an OEM replacement whenever possible. While you can easily repair or replace the original head, if the u-joint is not lubricated, you may need to replace it. A damaged gimbal joint can cause problems with your car’s transmission or other critical components. Replacing your car’s U-joint early can ensure its long-term performance.
Another option is to use two CV joints on the drive shaft. Using multiple CV joints on the drive shaft helps you in situations where alignment is difficult or operating angles do not match. This type of driveshaft joint is more expensive and complex than a U-joint. The disadvantages of using multiple CV joints are additional length, weight, and reduced operating angle. There are many reasons to use a U-joint on a drive shaft.
air-compressor

maintenance interval

Checking U-joints and slip joints is a critical part of routine maintenance. Most vehicles are equipped with lube fittings on the driveshaft slip joint, which should be checked and lubricated at every oil change. CZPT technicians are well-versed in axles and can easily identify a bad U-joint based on the sound of acceleration or shifting. If not repaired properly, the drive shaft can fall off, requiring expensive repairs.
Oil filters and oil changes are other parts of a vehicle’s mechanical system. To prevent rust, the oil in these parts must be replaced. The same goes for transmission. Your vehicle’s driveshaft should be inspected at least every 60,000 miles. The vehicle’s transmission and clutch should also be checked for wear. Other components that should be checked include PCV valves, oil lines and connections, spark plugs, tire bearings, steering gearboxes and brakes.
If your vehicle has a manual transmission, it is best to have it serviced by CZPT’s East Lexington experts. These services should be performed every two to four years or every 24,000 miles. For best results, refer to the owner’s manual for recommended maintenance intervals. CZPT technicians are experienced in axles and differentials. Regular maintenance of your drivetrain will keep it in good working order.

China wholesaler Transmission Gear Shaft for ATV 302HDG001 Pto Tractor Gearbox for Drive Shaft for Valves Crankshaft Rod Drive Shaft Made in China “Drive Shaft” Brush Shaft with Great quality

Solution Description

 

Our advantange, Lower MOQ as much less as 1 piece, 100% inspection, Brief Direct time.

We manufacture numerous shafts made according to drawing, like roud shaft, sq. shaft, hollow shaft, screw shaft, spline shaft, gear shaft, and so forth.

 

 

During the go ten a long time, we have supplied hundreds of clients with perfect precision machining work:

We manufacture various shafts produced in accordance to drawing, which includes roud shaft, sq. shaft, hollow shaft, screw shaft, spline shaft, gear shaft, and so forth.


Q: Are you treading business or maker?
A: We are producer.

Q: How about your MOQ?
A: We provide both prototype and mass generation, Our MOQ is 1 piece.

Q:How extended can I get a quote following RFQ?
A:we generally estimate you in 24 several hours. More element details presented will be helpful to conserve your time.
one) comprehensive engineering drawing with tolerance and other requirement.
two) the amount you demand from customers. 

Q:How is your high quality ensure?
A:we do 100% inspection just before delivery, we are seeking for extended term organization relationship.

Q:Can I indication NDA with you?
A:Certain, we will hold your drawing and information confidential. 

Material Alloy, stainless steel, Carbon steel, etc.
Mahines NC lathe, Milling macine, Ginder, CNC, Gear milling machine.
Third party inspection Available, SGS, CNAS, BV, etc.
UT standard ASTM A388, AS1065, GB/T6402, etc.
Packaging Seaworthy packing 
Drawing format PDF, DWG, DXF, STP, IGS, etc.
Application  Industry usage, Machine usage.
MOQ 1 piece
Drawing format PDF, DWG, DXF, STP, IGS, etc.
Quotation time 1 days.
Lead time Generaly 30-40 days for mass production.

###

Our factory equipments & Quality Control
Material Alloy, stainless steel, Carbon steel, etc.
Mahines NC lathe, Milling macine, Ginder, CNC, Gear milling machine.
Third party inspection Available, SGS, CNAS, BV, etc.
UT standard ASTM A388, AS1065, GB/T6402, etc.
Packaging Seaworthy packing 
Drawing format PDF, DWG, DXF, STP, IGS, etc.
Application  Industry usage, Machine usage.
MOQ 1 piece
Drawing format PDF, DWG, DXF, STP, IGS, etc.
Quotation time 1 days.
Lead time Generaly 30-40 days for mass production.

###

Our factory equipments & Quality Control

Driveshaft structure and vibrations associated with it

The structure of the drive shaft is critical to its efficiency and reliability. Drive shafts typically contain claw couplings, rag joints and universal joints. Other drive shafts have prismatic or splined joints. Learn about the different types of drive shafts and how they work. If you want to know the vibrations associated with them, read on. But first, let’s define what a driveshaft is.
air-compressor

transmission shaft

As the demand on our vehicles continues to increase, so does the demand on our drive systems. Higher CO2 emission standards and stricter emission standards increase the stress on the drive system while improving comfort and shortening the turning radius. These and other negative effects can place significant stress and wear on components, which can lead to driveshaft failure and increase vehicle safety risks. Therefore, the drive shaft must be inspected and replaced regularly.
Depending on your model, you may only need to replace one driveshaft. However, the cost to replace both driveshafts ranges from $650 to $1850. Additionally, you may incur labor costs ranging from $140 to $250. The labor price will depend on your car model and its drivetrain type. In general, however, the cost of replacing a driveshaft ranges from $470 to $1850.
Regionally, the automotive driveshaft market can be divided into four major markets: North America, Europe, Asia Pacific, and Rest of the World. North America is expected to dominate the market, while Europe and Asia Pacific are expected to grow the fastest. Furthermore, the market is expected to grow at the highest rate in the future, driven by economic growth in the Asia Pacific region. Furthermore, most of the vehicles sold globally are produced in these regions.
The most important feature of the driveshaft is to transfer the power of the engine to useful work. Drive shafts are also known as propeller shafts and cardan shafts. In a vehicle, a propshaft transfers torque from the engine, transmission, and differential to the front or rear wheels, or both. Due to the complexity of driveshaft assemblies, they are critical to vehicle safety. In addition to transmitting torque from the engine, they must also compensate for deflection, angular changes and length changes.

type

Different types of drive shafts include helical shafts, gear shafts, worm shafts, planetary shafts and synchronous shafts. Radial protruding pins on the head provide a rotationally secure connection. At least one bearing has a groove extending along its circumferential length that allows the pin to pass through the bearing. There can also be two flanges on each end of the shaft. Depending on the application, the shaft can be installed in the most convenient location to function.
Propeller shafts are usually made of high-quality steel with high specific strength and modulus. However, they can also be made from advanced composite materials such as carbon fiber, Kevlar and fiberglass. Another type of propeller shaft is made of thermoplastic polyamide, which is stiff and has a high strength-to-weight ratio. Both drive shafts and screw shafts are used to drive cars, ships and motorcycles.
Sliding and tubular yokes are common components of drive shafts. By design, their angles must be equal or intersect to provide the correct angle of operation. Unless the working angles are equal, the shaft vibrates twice per revolution, causing torsional vibrations. The best way to avoid this is to make sure the two yokes are properly aligned. Crucially, these components have the same working angle to ensure smooth power flow.
The type of drive shaft varies according to the type of motor. Some are geared, while others are non-geared. In some cases, the drive shaft is fixed and the motor can rotate and steer. Alternatively, a flexible shaft can be used to control the speed and direction of the drive. In some applications where linear power transmission is not possible, flexible shafts are a useful option. For example, flexible shafts can be used in portable devices.
air-compressor

put up

The construction of the drive shaft has many advantages over bare metal. A shaft that is flexible in multiple directions is easier to maintain than a shaft that is rigid in other directions. The shaft body and coupling flange can be made of different materials, and the flange can be made of a different material than the main shaft body. For example, the coupling flange can be made of steel. The main shaft body is preferably flared on at least one end, and the at least one coupling flange includes a first generally frustoconical projection extending into the flared end of the main shaft body.
The normal stiffness of fiber-based shafts is achieved by the orientation of parallel fibers along the length of the shaft. However, the bending stiffness of this shaft is reduced due to the change in fiber orientation. Since the fibers continue to travel in the same direction from the first end to the second end, the reinforcement that increases the torsional stiffness of the shaft is not affected. In contrast, a fiber-based shaft is also flexible because it uses ribs that are approximately 90 degrees from the centerline of the shaft.
In addition to the helical ribs, the drive shaft 100 may also contain reinforcing elements. These reinforcing elements maintain the structural integrity of the shaft. These reinforcing elements are called helical ribs. They have ribs on both the outer and inner surfaces. This is to prevent shaft breakage. These elements can also be shaped to be flexible enough to accommodate some of the forces generated by the drive. Shafts can be designed using these methods and made into worm-like drive shafts.

vibration

The most common cause of drive shaft vibration is improper installation. There are five common types of driveshaft vibration, each related to installation parameters. To prevent this from happening, you should understand what causes these vibrations and how to fix them. The most common types of vibration are listed below. This article describes some common drive shaft vibration solutions. It may also be beneficial to consider the advice of a professional vibration technician for drive shaft vibration control.
If you’re not sure if the problem is the driveshaft or the engine, try turning on the stereo. Thicker carpet kits can also mask vibrations. Nonetheless, you should contact an expert as soon as possible. If vibration persists after vibration-related repairs, the driveshaft needs to be replaced. If the driveshaft is still under warranty, you can repair it yourself.
CV joints are the most common cause of third-order driveshaft vibration. If they are binding or fail, they need to be replaced. Alternatively, your CV joints may just be misaligned. If it is loose, you can check the CV connector. Another common cause of drive shaft vibration is improper assembly. Improper alignment of the yokes on both ends of the shaft can cause them to vibrate.
Incorrect trim height can also cause driveshaft vibration. Correct trim height is necessary to prevent drive shaft wobble. Whether your vehicle is new or old, you can perform some basic fixes to minimize problems. One of these solutions involves balancing the drive shaft. First, use the hose clamps to attach the weights to it. Next, attach an ounce of weight to it and spin it. By doing this, you minimize the frequency of vibration.
air-compressor

cost

The global driveshaft market is expected to exceed (xxx) million USD by 2028, growing at a compound annual growth rate (CAGR) of XX%. Its soaring growth can be attributed to several factors, including increasing urbanization and R&D investments by leading market players. The report also includes an in-depth analysis of key market trends and their impact on the industry. Additionally, the report provides a comprehensive regional analysis of the Driveshaft Market.
The cost of replacing the drive shaft depends on the type of repair required and the cause of the failure. Typical repair costs range from $300 to $750. Rear-wheel drive cars usually cost more. But front-wheel drive vehicles cost less than four-wheel drive vehicles. You may also choose to try repairing the driveshaft yourself. However, it is important to do your research and make sure you have the necessary tools and equipment to perform the job properly.
The report also covers the competitive landscape of the Drive Shafts market. It includes graphical representations, detailed statistics, management policies, and governance components. Additionally, it includes a detailed cost analysis. Additionally, the report presents views on the COVID-19 market and future trends. The report also provides valuable information to help you decide how to compete in your industry. When you buy a report like this, you are adding credibility to your work.
A quality driveshaft can improve your game by ensuring distance from the tee and improving responsiveness. The new material in the shaft construction is lighter, stronger and more responsive than ever before, so it is becoming a key part of the driver. And there are a variety of options to suit any budget. The main factor to consider when buying a shaft is its quality. However, it’s important to note that quality doesn’t come cheap and you should always choose an axle based on what your budget can handle.

China Best Sales Drive Shaft Cardan Shaft Propeller Shaft for FIAT Panda FIAT Panda II (169) 4X4 2004-2014, 552221070, 55193595, 55197051 wholesaler

Product Description

Product name: Drive shaft OEM NO.:  552221070,55193595,55197051
Quality authentication: ISO9001:2000/TS16949 Application:  FIAT PHangZhou II (169) 4X4 2004-2014
Raw material:  45#, 60#, or according to your requirement Blank: Forging
production standard: Samples, drawings or OE Surface treatment: Heat treatment or parkerising
Inspect: All-round quality inspection before packing Test: Torque fatigue test and detecting instrument
LOGO on package: Natural or customized Package material: PVC bag+cartons+wooden pallets

OUR SERVICE

1.Minimum Quantity: 20 PCS
2.About sample:Sample need 7 to15 days to complete,the sample under USD100.00 is free but the freight need customer pay for it.
3.Packing declaration :Neutral packing or customer brand.
4.Terms of payment:T/T 30%Deposit ,70% Balance before shipment.
5.Delivery date :FOB HangZhou or ZheJiang ,30-40 days after Contract confirmed and deposit paid.
 
FAQ
 
Q1:Why choose HUIHAI?
We wish to be your First choice one-stop Auto Parts supplier. We wish to make your job and your life easier and happier, not only we offer you car parts with more reasonable quality and price than your expectations, but also provide you market-sales suggestions for your reference.
Our mission is to provide integrated automotive car parts resources for professional, efficient service.
Q2.How is quality ensured?

All our processes strictly adhere to ISO9001 procedures. And we have 1 year’s quality warranty against B/L issue date. If the product does not work properly as described, and proven to be at our fault, we will provide exchange services only for the same specific item.

Q3:If we don’t find what we need on your website, what should we do?

You can send the pictures, photos and drawings of the products you need by email, we will check if we have them. We develop new models every month, and some of them maybe not updated in time. Or you can send us sample by DHL/TNT, we can develop the new model especially for you.

Q4:Can I buy 1 piece of each item to test the quality?
Yes, we are pleased to send you 1 piece to test the quality if we have stock for the item you need. We’re confident that once you get it in your hand, you will be very satisfied that it will be a very profitable item for your company.

Q5: How to order and make payment?

We will send offical invoice to you and you can pay via T/T bank transfer.

Q6: If you find our bank account different than before? How to do?

Please don’t send the payment and you need to double check with us(refer to our bank acccount statement that both sides signed),call our sales person to confirm it.

Q7:What about delivery time?

If we have stocks of the item you need, we can send goods to you within 3 working days after deposit or 100% payment into our bank account.

If we don’t have enough stocks, different products’ will take different days .Generally, it needs 20 to 35 working days.

Q8:What about shipping?

We can sent you a sample by air and the quantities you required by the container no matter your assigned agent or ours. We can deliver the goods at HangZhou or ZheJiang port,which are near our city.

Q9:What’s your agency/distributor policy focused on car parts?

We have too many different policies according to target markets, so please send emails for detailed discussions or talk face to face.
 
 
 
CONTACT DETAILS
 
JESSICA HUANG
 
 
ADA ZHANG
 
 
 
HangZhou CZPT Auto Parts Co.Ltd
Website:huihai0321

How to Calculate the Diameter of a Worm Gear

worm shaft
In this article, we will discuss the characteristics of the Duplex, Single-throated, and Undercut worm gears and the analysis of worm shaft deflection. Besides that, we will explore how the diameter of a worm gear is calculated. If you have any doubt about the function of a worm gear, you can refer to the table below. Also, keep in mind that a worm gear has several important parameters which determine its working.

Duplex worm gear

A duplex worm gear set is distinguished by its ability to maintain precise angles and high gear ratios. The backlash of the gearing can be readjusted several times. The axial position of the worm shaft can be determined by adjusting screws on the housing cover. This feature allows for low backlash engagement of the worm tooth pitch with the worm gear. This feature is especially beneficial when backlash is a critical factor when selecting gears.
The standard worm gear shaft requires less lubrication than its dual counterpart. Worm gears are difficult to lubricate because they are sliding rather than rotating. They also have fewer moving parts and fewer points of failure. The disadvantage of a worm gear is that you cannot reverse the direction of power due to friction between the worm and the wheel. Because of this, they are best used in machines that operate at low speeds.
Worm wheels have teeth that form a helix. This helix produces axial thrust forces, depending on the hand of the helix and the direction of rotation. To handle these forces, the worms should be mounted securely using dowel pins, step shafts, and dowel pins. To prevent the worm from shifting, the worm wheel axis must be aligned with the center of the worm wheel’s face width.
The backlash of the CZPT duplex worm gear is adjustable. By shifting the worm axially, the section of the worm with the desired tooth thickness is in contact with the wheel. As a result, the backlash is adjustable. Worm gears are an excellent choice for rotary tables, high-precision reversing applications, and ultra-low-backlash gearboxes. Axial shift backlash is a major advantage of duplex worm gears, and this feature translates into a simple and fast assembly process.
When choosing a gear set, the size and lubrication process will be crucial. If you’re not careful, you might end up with a damaged gear or 1 with improper backlash. Luckily, there are some simple ways to maintain the proper tooth contact and backlash of your worm gears, ensuring long-term reliability and performance. As with any gear set, proper lubrication will ensure your worm gears last for years to come.
worm shaft

Single-throated worm gear

Worm gears mesh by sliding and rolling motions, but sliding contact dominates at high reduction ratios. Worm gears’ efficiency is limited by the friction and heat generated during sliding, so lubrication is necessary to maintain optimal efficiency. The worm and gear are usually made of dissimilar metals, such as phosphor-bronze or hardened steel. MC nylon, a synthetic engineering plastic, is often used for the shaft.
Worm gears are highly efficient in transmission of power and are adaptable to various types of machinery and devices. Their low output speed and high torque make them a popular choice for power transmission. A single-throated worm gear is easy to assemble and lock. A double-throated worm gear requires 2 shafts, 1 for each worm gear. Both styles are efficient in high-torque applications.
Worm gears are widely used in power transmission applications because of their low speed and compact design. A numerical model was developed to calculate the quasi-static load sharing between gears and mating surfaces. The influence coefficient method allows fast computing of the deformation of the gear surface and local contact of the mating surfaces. The resultant analysis shows that a single-throated worm gear can reduce the amount of energy required to drive an electric motor.
In addition to the wear caused by friction, a worm wheel can experience additional wear. Because the worm wheel is softer than the worm, most of the wear occurs on the wheel. In fact, the number of teeth on a worm wheel should not match its thread count. A single-throated worm gear shaft can increase the efficiency of a machine by as much as 35%. In addition, it can lower the cost of running.
A worm gear is used when the diametrical pitch of the worm wheel and worm gear are the same. If the diametrical pitch of both gears is the same, the 2 worms will mesh properly. In addition, the worm wheel and worm will be attached to each other with a set screw. This screw is inserted into the hub and then secured with a locknut.

Undercut worm gear

Undercut worm gears have a cylindrical shaft, and their teeth are shaped in an evolution-like pattern. Worms are made of a hardened cemented metal, 16MnCr5. The number of gear teeth is determined by the pressure angle at the zero gearing correction. The teeth are convex in normal and centre-line sections. The diameter of the worm is determined by the worm’s tangential profile, d1. Undercut worm gears are used when the number of teeth in the cylinder is large, and when the shaft is rigid enough to resist excessive load.
The center-line distance of the worm gears is the distance from the worm centre to the outer diameter. This distance affects the worm’s deflection and its safety. Enter a specific value for the bearing distance. Then, the software proposes a range of suitable solutions based on the number of teeth and the module. The table of solutions contains various options, and the selected variant is transferred to the main calculation.
A pressure-angle-angle-compensated worm can be manufactured using single-pointed lathe tools or end mills. The worm’s diameter and depth are influenced by the cutter used. In addition, the diameter of the grinding wheel determines the profile of the worm. If the worm is cut too deep, it will result in undercutting. Despite the undercutting risk, the design of worm gearing is flexible and allows considerable freedom.
The reduction ratio of a worm gear is massive. With only a little effort, the worm gear can significantly reduce speed and torque. In contrast, conventional gear sets need to make multiple reductions to get the same reduction level. Worm gears also have several disadvantages. Worm gears can’t reverse the direction of power because the friction between the worm and the wheel makes this impossible. The worm gear can’t reverse the direction of power, but the worm moves from 1 direction to another.
The process of undercutting is closely related to the profile of the worm. The worm’s profile will vary depending on the worm diameter, lead angle, and grinding wheel diameter. The worm’s profile will change if the generating process has removed material from the tooth base. A small undercut reduces tooth strength and reduces contact. For smaller gears, a minimum of 14-1/2degPA gears should be used.
worm shaft

Analysis of worm shaft deflection

To analyze the worm shaft deflection, we first derived its maximum deflection value. The deflection is calculated using the Euler-Bernoulli method and Timoshenko shear deformation. Then, we calculated the moment of inertia and the area of the transverse section using CAD software. In our analysis, we used the results of the test to compare the resulting parameters with the theoretical ones.
We can use the resulting centre-line distance and worm gear tooth profiles to calculate the required worm deflection. Using these values, we can use the worm gear deflection analysis to ensure the correct bearing size and worm gear teeth. Once we have these values, we can transfer them to the main calculation. Then, we can calculate the worm deflection and its safety. Then, we enter the values into the appropriate tables, and the resulting solutions are automatically transferred into the main calculation. However, we have to keep in mind that the deflection value will not be considered safe if it is larger than the worm gear’s outer diameter.
We use a four-stage process for investigating worm shaft deflection. We first apply the finite element method to compute the deflection and compare the simulation results with the experimentally tested worm shafts. Finally, we perform parameter studies with 15 worm gear toothings without considering the shaft geometry. This step is the first of 4 stages of the investigation. Once we have calculated the deflection, we can use the simulation results to determine the parameters needed to optimize the design.
Using a calculation system to calculate worm shaft deflection, we can determine the efficiency of worm gears. There are several parameters to optimize gearing efficiency, including material and geometry, and lubricant. In addition, we can reduce the bearing losses, which are caused by bearing failures. We can also identify the supporting method for the worm shafts in the options menu. The theoretical section provides further information.

China Best Sales Drive Shaft Cardan Shaft Propeller Shaft for FIAT Panda FIAT Panda II (169) 4X4 2004-2014, 552221070, 55193595, 55197051   wholesaler China Best Sales Drive Shaft Cardan Shaft Propeller Shaft for FIAT Panda FIAT Panda II (169) 4X4 2004-2014, 552221070, 55193595, 55197051   wholesaler