Tag Archives: cardan shaft coupling

China Custom High Quality Long Nontelescopic Cardan Shaft Swp-D Type Universal Coupling Universal Joints

Product Description

High quality Long Nontelescopic Cardan Shaft SWP-D Type Universal Coupling Universal joints

Description:
The SWP-D long non bending universal joint coupling is a universal joint designed specifically for applications with long distances between 2 shafts. It is a double joint universal joint, which means it can work at an angle of 90 degrees. The “long” CHINAMFG indicates that the main body of the joint is longer than the standard SWP-D universal coupling, which allows it to adapt to more bending in the transmission system. The ‘no flexibility’ CHINAMFG indicates that the joint does not have a flexible coupling, which makes it harder and less susceptible to vibration. SWP-D long flexible universal joint couplings are commonly used in agricultural, construction, and mining equipment. It is also used in some automotive applications, such as transmission shafts and transfer boxes. The following are some characteristics of the SWP-D long flexible universal joint coupling: Double joint design, with a working angle of up to 90 degrees Extending the body to make the powertrain system more flexible No flexible coupling, with rigidity and vibration resistance Used in agriculture, construction, mining, and automotive applications

Advantages:
The SWP-D long flexible universal joint coupling has many advantages, including: 1. Can adapt to long distances between 2 shafts: The long body of the joint allows SWP-D to be long without flexible universal joint couplings, in order to adapt to more flexibility in the transmission system, which is very important for applications where 2 shafts are far apart. 2. Operable at angles up to 90 degrees: The double joint design of the SWP-D long flexible universal joint coupling allows it to operate at angles up to 90%, which is crucial for applications where 2 shafts are misaligned. 3. More rigid and less susceptible to vibration: SWP-D lacks flexible couplings, and the long-term absence of flexible universal joint couplings makes it more rigid and less susceptible to vibration. This is very important for applications where the transmission system is subjected to high vibration loads. 4. Durability and Durability: The SWP-D long non bending universal joint coupling is made of high-quality materials and designed for durability and durability. 5. Reducing noise and vibration: The rigid design of the SWP-D long flexible universal joint coupling helps to reduce noise and vibration in the transmission system. 6. Improving efficiency: The SWP-D long flexible universal joint coupling helps to improve the efficiency of the transmission system by reducing power loss. 7. Improving safety: The SWP-D long flexible universal joint coupling helps to improve safety by reducing the risk of transmission system failures.

Paramters:

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.
FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Rigid
Customization:
Available

|

Customized Request

cardan shaft

Can cardan joints be used in heavy-duty machinery and equipment?

Yes, cardan joints can be used in heavy-duty machinery and equipment. Cardan joints, also known as universal joints, are versatile mechanical couplings that transmit torque between misaligned shafts. They offer several advantages that make them suitable for heavy-duty applications. Here’s a detailed explanation of why cardan joints can be used in heavy-duty machinery and equipment:

  • Torque Transmission: Cardan joints are capable of transmitting high levels of torque between misaligned shafts. This makes them well-suited for heavy-duty applications that require the transfer of substantial power. The design of the joint allows for smooth torque transmission, even in cases where the shafts are not perfectly aligned.
  • Misalignment Compensation: In heavy-duty machinery and equipment, misalignments between shafts can occur due to factors such as thermal expansion, vibration, or structural flexing. Cardan joints excel at compensating for such misalignments. Their flexible design accommodates angular, parallel, and axial misalignments, allowing for reliable operation in challenging industrial environments.
  • Durability and Strength: Heavy-duty machinery and equipment often operate under demanding conditions, subjecting components to high loads and harsh environments. Cardan joints are typically constructed from durable materials such as alloy steels, which provide excellent strength and resistance to fatigue and wear. This durability enables them to withstand the heavy loads and prolonged operation associated with heavy-duty applications.
  • Compact Design: Cardan joints have a compact design, which is advantageous in heavy-duty machinery and equipment where space constraints may be present. Their compactness allows for efficient installation and integration within the system, making them suitable for applications where minimizing size and weight is important.
  • Versatility: Cardan joints are available in various sizes and configurations to accommodate different heavy-duty applications. They can be customized to meet specific torque and speed requirements, making them versatile for use in a wide range of machinery and equipment, including industrial machinery, construction equipment, agricultural machinery, and more.

While cardan joints are generally suitable for heavy-duty applications, it is important to consider certain factors to ensure optimal performance. These factors include proper selection of the joint size and type based on the application requirements, adherence to specified torque and speed limits, regular maintenance to prevent wear and ensure proper lubrication, and consideration of any environmental factors that may affect the joint’s performance.

In summary, cardan joints can indeed be used in heavy-duty machinery and equipment due to their excellent torque transmission capabilities, ability to compensate for misalignments, durability, compact design, and versatility. By considering the specific requirements of the application and following appropriate maintenance practices, cardan joints can provide reliable and efficient operation in heavy-duty industrial settings.

cardan shaft

How do you calculate the efficiency of a cardan joint assembly?

Calculating the efficiency of a cardan joint assembly involves evaluating the power loss in the joint and comparing it to the input power. Efficiency is typically expressed as a percentage and provides an indication of how effectively the cardan joint transfers power from the input shaft to the output shaft. Here’s a detailed explanation:

To calculate the efficiency of a cardan joint assembly, follow these steps:

1. Measure Input Power: Determine the power being supplied to the cardan joint assembly. This can be measured using appropriate instruments such as a dynamometer or by utilizing the known power rating of the input source.

2. Measure Output Power: Measure the power being delivered by the output shaft of the cardan joint assembly. This can be done using a dynamometer or by utilizing the known power rating of the output device or load.

3. Calculate Power Loss: Calculate the power loss in the cardan joint assembly by subtracting the output power from the input power. The power loss represents the amount of power dissipated or wasted within the joint.

Power Loss = Input Power – Output Power

4. Calculate Efficiency: Divide the output power by the input power and multiply the result by 100 to obtain the efficiency as a percentage.

Efficiency = (Output Power / Input Power) * 100

The efficiency of the cardan joint assembly can be interpreted as the percentage of input power that is effectively transmitted to the output shaft. A higher efficiency indicates a more efficient power transfer, while a lower efficiency suggests a higher level of power loss within the joint.

It’s important to note that the efficiency of a cardan joint assembly can be influenced by various factors, including misalignments, lubrication conditions, wear, and operating speeds. Additionally, the efficiency may vary at different operating conditions and under varying loads. Therefore, it is advisable to perform efficiency calculations under representative operating conditions and consider the specific characteristics of the cardan joint assembly being analyzed.

By calculating the efficiency, engineers and designers can assess the performance of the cardan joint assembly, identify potential areas for improvement, and optimize the power transmission system for enhanced efficiency and overall effectiveness.

cardan shaft

Are there different types of cardan joints available?

Yes, there are different types of cardan joints available to suit various applications and requirements. The design and configuration of a cardan joint can vary based on factors such as load capacity, torque transmission, operating conditions, and installation constraints. Here’s a detailed explanation of some commonly used types of cardan joints:

  • Single Universal Joint: The single universal joint is the most basic and commonly used type of cardan joint. It consists of two yokes connected by a cross, forming a single joint. This type of cardan joint allows for angular misalignment between the input and output shafts. It is often used in applications where misalignment angles are relatively small, and flexibility is required.
  • Double Cardan Joint: The double cardan joint, also known as a constant velocity joint (CV joint), is an enhanced version of the single universal joint. It consists of two single universal joints connected by an intermediate shaft. This configuration helps to cancel out the velocity fluctuations and torque variations that can occur with a single joint. Double cardan joints are commonly used in applications where smooth and constant power transmission is required, such as in front-wheel drive vehicles.
  • Tractor Joint: A tractor joint is a specialized type of cardan joint used in agricultural machinery, particularly in power take-off (PTO) systems. It consists of three yokes connected by two crosses. The tractor joint allows for higher torque transmission and can accommodate larger misalignment angles. It is designed to handle the demanding conditions and heavy loads often encountered in agricultural applications.
  • Ball-and-Socket Joint: The ball-and-socket joint, also known as a Hooke’s joint, is another variant of the cardan joint. It consists of a cross with a spherical ball at each end, which fits into a corresponding socket in the yokes. The ball-and-socket joint provides greater flexibility and can accommodate larger angles of misalignment. It is commonly used in applications where significant angular movement is required, such as steering systems in vehicles.
  • Flexible Coupling: While not strictly a cardan joint, flexible couplings serve a similar purpose in accommodating misalignment. Flexible couplings are often used in applications where the misalignment is minimal and torque transmission is a primary concern. They utilize elastomeric or flexible elements to provide flexibility and compensate for small misalignments between shafts.

These are some of the commonly used types of cardan joints. Each type offers specific advantages and is suitable for different applications based on factors such as misalignment requirements, torque transmission, and operating conditions. The selection of the appropriate cardan joint type depends on the specific needs of the application and the desired performance characteristics.

China Custom High Quality Long Nontelescopic Cardan Shaft Swp-D Type Universal Coupling Universal Joints  China Custom High Quality Long Nontelescopic Cardan Shaft Swp-D Type Universal Coupling Universal Joints
editor by CX 2024-05-14

China supplier CZPT Ws Type Cardan Shaft Coupling Universal Joint

Product Description

WS Type Universal Joint Shaft

Features:
1. It is suitable for transmission coupling space on the same plane of 2 axis angle beta β≤45°, the nominal torque transmission 11.2-1120N. 
2.The WSD type is a single cross universal coupling, and the WS type is a double cross universal coupling.
3.Each section between the largest axis angle 45º.
4.The finished hole H7, according to the requirements of keyseating, 6 square hole and square hole.
5.The angle between the 2 axes is allowed in a limited range as the work requirements change.

 

NO

 

 

Tn/N·m

d(H7)

D

         L0

L

L1

          m/kg

           I/kg·m2

 WSD

 

WS
 

WSD

WS

WSD

    WS

Y

J1

Y

J1

Y

J1

Y

J1

Y

J1

Y

J1

Y

J1

WS1

WSD1

11.2

8

16

60

80

20

20

0.23

0.32

0.06

0.08

9

10

66

60

86

80

25

22

0.2

0.29

0.05

0.07

WS2

WSD2

22.4

10

20

70

64

96

90

26

0.64

0.57

0.93

0.88

0.1

0.09

0.15

0.15

11

12

84

74

110

100

32

27

WS3

WSD3

45

12

25

90

80

122

112

32

1.45

1.3

2.1

1.95

0.17

0.15

0.24

0.22

14

WS4

WSD4

71

16

32

116

82

154

130

42

30

38

5.92

4.86

8.56

0.48

0.39

0.32

0.56

0.49

18

WS5

WSD5

140

19

40

144

116

192

164

48

16.3

12.9

24

20.6

0.72

0.59

1.04

0.91

20

52

38

22

WS6

WSD6

280

24

50

152

124

210

182

52

38

58

45.7

36.7

68.9

59.7

1.28

1.03

1.89

1.64

25

172

136

330

194

62

44

28

WS7

WSD7

560

30

60

226

182

296

252

82

60

70

148

117

207

177

2.82

2.31

3.9

3.38

32

35

WS8

WSD8

1120

38

75

240

196

332

288

92

396

338

585

525

5.03

4.41

7.25

6.63

40

300

244

392

336

112

84

42

Detailed Photos

Company Profile

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.

Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.

Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

Our Services

1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop new models when there are new cars in the market.

5. Quality Control
Every step should be a particular test by Professional Staff according to the standard of ISO9001 and TS16949.

FAQ

Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all customers with customized PDF or AI format artwork.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have an excellent price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances. 

Q 6: What is the MOQ?
A: Usually our MOQ is 1pcs.

Q 7: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order? 
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A:1) T/T. 

Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 14mm
Speed: 9000r/M
Structure: Flexible
Customization:
Available

|

Customized Request

cardan shaft

Can cardan joints be used in heavy-duty machinery and equipment?

Yes, cardan joints can be used in heavy-duty machinery and equipment. Cardan joints, also known as universal joints, are versatile mechanical couplings that transmit torque between misaligned shafts. They offer several advantages that make them suitable for heavy-duty applications. Here’s a detailed explanation of why cardan joints can be used in heavy-duty machinery and equipment:

  • Torque Transmission: Cardan joints are capable of transmitting high levels of torque between misaligned shafts. This makes them well-suited for heavy-duty applications that require the transfer of substantial power. The design of the joint allows for smooth torque transmission, even in cases where the shafts are not perfectly aligned.
  • Misalignment Compensation: In heavy-duty machinery and equipment, misalignments between shafts can occur due to factors such as thermal expansion, vibration, or structural flexing. Cardan joints excel at compensating for such misalignments. Their flexible design accommodates angular, parallel, and axial misalignments, allowing for reliable operation in challenging industrial environments.
  • Durability and Strength: Heavy-duty machinery and equipment often operate under demanding conditions, subjecting components to high loads and harsh environments. Cardan joints are typically constructed from durable materials such as alloy steels, which provide excellent strength and resistance to fatigue and wear. This durability enables them to withstand the heavy loads and prolonged operation associated with heavy-duty applications.
  • Compact Design: Cardan joints have a compact design, which is advantageous in heavy-duty machinery and equipment where space constraints may be present. Their compactness allows for efficient installation and integration within the system, making them suitable for applications where minimizing size and weight is important.
  • Versatility: Cardan joints are available in various sizes and configurations to accommodate different heavy-duty applications. They can be customized to meet specific torque and speed requirements, making them versatile for use in a wide range of machinery and equipment, including industrial machinery, construction equipment, agricultural machinery, and more.

While cardan joints are generally suitable for heavy-duty applications, it is important to consider certain factors to ensure optimal performance. These factors include proper selection of the joint size and type based on the application requirements, adherence to specified torque and speed limits, regular maintenance to prevent wear and ensure proper lubrication, and consideration of any environmental factors that may affect the joint’s performance.

In summary, cardan joints can indeed be used in heavy-duty machinery and equipment due to their excellent torque transmission capabilities, ability to compensate for misalignments, durability, compact design, and versatility. By considering the specific requirements of the application and following appropriate maintenance practices, cardan joints can provide reliable and efficient operation in heavy-duty industrial settings.

cardan shaft

Can cardan joints be used in industrial machinery and manufacturing?

Yes, cardan joints are commonly used in industrial machinery and manufacturing applications due to their versatility, durability, and ability to transmit torque at various angles. They offer several advantages that make them suitable for a wide range of industrial applications. Here’s a detailed explanation:

1. Torque Transmission: Industrial machinery often requires the transmission of torque between different components or shafts that may not be in a perfectly aligned position. Cardan joints excel at transmitting torque even at significant angles and misalignments, allowing for flexible power transmission in industrial applications. They can efficiently transfer high torque loads and handle varying operating conditions.

2. Misalignment Compensation: Cardan joints are designed to accommodate misalignments and angular variations, making them ideal for industrial machinery. They can compensate for misalignments caused by structural deflection, thermal expansion, or other factors, ensuring smooth and reliable power transmission. This capability helps to minimize stress and wear on connected components and extends the life of the machinery.

3. Flexibility and Articulation: Industrial machinery often requires flexibility and articulation to adapt to different production processes or accommodate dynamic movements. Cardan joints provide rotational freedom and allow for angular movement, enabling the machinery to adjust to changing requirements. Their universal joint design allows for smooth rotation and accommodates the required range of motion.

4. Compact Design: Cardan joints have a relatively compact design, making them suitable for integration into industrial machinery where space is often limited. Their compact size allows for efficient packaging within the machinery, optimizing overall design and minimizing footprint. This is especially beneficial in applications where multiple joints are required within a confined space.

5. Durability and Strength: Industrial machinery operates under demanding conditions, including heavy loads, high speeds, and harsh environments. Cardan joints are often constructed using durable materials such as alloy steels or high-strength alloys, providing the necessary strength and resilience to withstand industrial applications. They are designed to handle the demanding loads and forces encountered in manufacturing processes.

6. Easy Maintenance and Serviceability: Cardan joints are generally low-maintenance components. They require periodic inspection, lubrication, and replacement of worn parts, but their design often allows for easy access and replacement if needed. This facilitates maintenance activities and minimizes downtime in industrial machinery.

7. Versatility: Cardan joints are available in various configurations, sizes, and load capacities, allowing them to be tailored to specific industrial machinery requirements. They can be customized to accommodate different shaft sizes, torque ratings, and mounting arrangements, making them adaptable to a wide range of manufacturing applications.

8. Cost-Effectiveness: Cardan joints offer a cost-effective solution for torque transmission in industrial machinery. Their durability, reliability, and long service life contribute to reduced maintenance and replacement costs. Additionally, their ability to compensate for misalignments can help minimize wear on other machinery components, further reducing overall maintenance expenses.

When integrating cardan joints into industrial machinery and manufacturing systems, it is important to consider the specific application requirements, operating conditions, and load characteristics. Proper design, selection, and installation practices should be followed to ensure optimal performance and longevity.

Consulting with engineers or experts specializing in drivetrain systems and industrial machinery design can provide valuable insights and guidance on the selection, integration, and maintenance of cardan joints for specific industrial applications.

cardan shaft

What are the applications of a cardan joint?

A cardan joint, also known as a universal joint or U-joint, has a wide range of applications across various industries. Its ability to transmit rotational motion and accommodate misalignment between shafts makes it suitable for different systems and machines. Here’s a detailed explanation of the applications of a cardan joint:

  • Automotive Drivetrains: One of the primary applications of cardan joints is in automotive drivetrains. They are used in vehicles with rear-wheel drive, all-wheel drive, and four-wheel drive systems. Cardan joints help transmit power from the engine to the driveshaft, allowing the rotational motion to be transferred to the rear axle or all four wheels. They provide flexibility and compensation for misalignment between the engine, transmission, and rear differential.
  • Industrial Machinery: Cardan joints find extensive use in various industrial machinery applications. They are commonly employed in power transmission systems, especially when there is a need to transmit rotational motion between non-collinear shafts. Cardan joints are used in conveyor systems, printing presses, machine tools, pumps, mixers, and many other industrial machines that require efficient transmission of rotational power.
  • Aerospace and Aviation: Cardan joints have applications in the aerospace and aviation industries. They are used in aircraft control systems, such as the control linkages between the control surfaces (elevator, rudder, ailerons) and the cockpit controls. Cardan joints allow for the transmission of pilot input to the control surfaces while accommodating any misalignment or changes in angles during flight.
  • Marine Propulsion: In marine applications, cardan joints are utilized in propulsion systems. They are commonly used in boat drivetrains to transfer rotational motion from the engine to the propeller shaft. Cardan joints enable the engine to be mounted at an angle or in a different position from the propeller shaft, compensating for the misalignment that can arise due to the boat’s hull shape and design.
  • Railway Systems: Cardan joints play a role in railway systems, particularly in drivetrains and couplings. They are used in locomotives and train cars to transfer rotational motion between different components, such as the engine, gearbox, and wheel axle. Cardan joints provide flexibility and accommodate misalignment that may occur due to the movement and articulation of train cars on curved tracks.
  • Mining and Construction Equipment: Cardan joints are employed in heavy-duty mining and construction equipment. They are used in applications such as excavators, loaders, bulldozers, and off-highway trucks. Cardan joints help transmit power and motion between different components of these machines, allowing them to operate efficiently and withstand the demanding conditions of mining and construction environments.
  • Industrial Robotics: Cardan joints find applications in industrial robotics and automation. They are used in robotic arms and manipulators to transmit rotational motion between different segments or joints of the robotic system. Cardan joints enable precise and flexible movement, allowing robots to perform complex tasks in manufacturing, assembly, and other industrial processes.

These are just a few examples of the diverse applications of cardan joints. Their ability to handle misalignment, transmit rotational motion at varying angles, and provide flexibility make them a fundamental component in numerous systems and machines across industries.

China supplier CZPT Ws Type Cardan Shaft Coupling Universal Joint  China supplier CZPT Ws Type Cardan Shaft Coupling Universal Joint
editor by CX 2024-05-07

China factory Swp-D Type No Telescopic Long Universal Coupling Flexible Cardan Shaft Universal Joint

Product Description

SWP-D Type No Telescopic Long Universal Coupling Flexible Cardan Shaft Universal Joint

Description:
The SWP-D long non bending universal joint coupling is a universal joint designed specifically for applications with long distances between 2 shafts. It is a double joint universal joint, which means it can work at an angle of 90 degrees. The “long” CHINAMFG indicates that the main body of the joint is longer than the standard SWP-D universal coupling, which allows it to adapt to more bending in the transmission system. The ‘no flexibility’ CHINAMFG indicates that the joint does not have a flexible coupling, which makes it harder and less susceptible to vibration. SWP-D long flexible universal joint couplings are commonly used in agricultural, construction, and mining equipment. It is also used in some automotive applications, such as transmission shafts and transfer boxes. The following are some characteristics of the SWP-D long flexible universal joint coupling: Double joint design, with a working angle of up to 90 degrees Extending the body to make the powertrain system more flexible No flexible coupling, with rigidity and vibration resistance Used in agriculture, construction, mining, and automotive applications

Advantages:
The SWP-D long flexible universal joint coupling has many advantages, including: 1. Can adapt to long distances between 2 shafts: The long body of the joint allows SWP-D to be long without flexible universal joint couplings, in order to adapt to more flexibility in the transmission system, which is very important for applications where 2 shafts are far apart. 2. Operable at angles up to 90 degrees: The double joint design of the SWP-D long flexible universal joint coupling allows it to operate at angles up to 90%, which is crucial for applications where 2 shafts are misaligned. 3. More rigid and less susceptible to vibration: SWP-D lacks flexible couplings, and the long-term absence of flexible universal joint couplings makes it more rigid and less susceptible to vibration. This is very important for applications where the transmission system is subjected to high vibration loads. 4. Durability and Durability: The SWP-D long non bending universal joint coupling is made of high-quality materials and designed for durability and durability. 5. Reducing noise and vibration: The rigid design of the SWP-D long flexible universal joint coupling helps to reduce noise and vibration in the transmission system. 6. Improving efficiency: The SWP-D long flexible universal joint coupling helps to improve the efficiency of the transmission system by reducing power loss. 7. Improving safety: The SWP-D long flexible universal joint coupling helps to improve safety by reducing the risk of transmission system failures.

Paramters:

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.
FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Rigid
Customization:
Available

|

Customized Request

cardan shaft

Can cardan joints be used in both horizontal and vertical orientations?

Yes, cardan joints can be used in both horizontal and vertical orientations. Cardan joints, also known as universal joints, are flexible mechanical couplings that transmit torque between misaligned shafts. Their design allows for angular movement and compensation of misalignments in various orientations. Here’s a detailed explanation of how cardan joints can be used in both horizontal and vertical orientations:

Horizontal Orientation: In a horizontal orientation, the input and output shafts of the cardan joint are aligned horizontally, typically parallel to the ground. The joint is capable of transmitting torque smoothly and efficiently between the misaligned shafts while accommodating angular, parallel, and axial misalignments. This makes it suitable for a wide range of horizontal applications, including automotive drivetrains, industrial machinery, and agricultural equipment.

Vertical Orientation: In a vertical orientation, the input and output shafts of the cardan joint are aligned vertically, with one shaft positioned above the other. The joint is still capable of transmitting torque and compensating for misalignments in this configuration. However, it is important to consider the effects of gravity and the additional load imposed on the joint due to the weight of the shafts and any connected components. Adequate support and proper bearing selection should be considered to ensure reliable operation in vertical applications.

Whether in horizontal or vertical orientations, cardan joints offer several advantages that make them versatile for various applications:

  • Misalignment Compensation: Cardan joints excel at compensating for angular, parallel, and axial misalignments between shafts. This flexibility allows for smooth torque transmission and reduces stress on the connected components.
  • Torque Transmission: Cardan joints are capable of transmitting high levels of torque between misaligned shafts. This makes them suitable for applications that require the transfer of substantial power.
  • Durability: Cardan joints are typically constructed from durable materials, such as alloy steels, which provide excellent strength and resistance to fatigue and wear. This durability enables them to withstand the demands of various orientations and operating conditions.
  • Compact Design: Cardan joints have a compact design, allowing for efficient installation and integration within the system, regardless of the orientation. This is particularly advantageous in applications with space constraints.
  • Versatility: Cardan joints are available in various sizes and configurations to accommodate different orientations and applications. They can be customized to meet specific torque and speed requirements.

It is important to note that specific considerations may apply depending on the application and the magnitude of misalignments. Factors such as load capacity, lubrication, bearing arrangement, and maintenance should be taken into account to ensure optimal performance and longevity of the cardan joint.

In summary, cardan joints can be used in both horizontal and vertical orientations due to their ability to compensate for misalignments and transmit torque between shafts. Their versatility, durability, and compact design make them suitable for a wide range of applications in various orientations.

cardan shaft

How do you ensure reliable and consistent performance in a cardan joint?

Ensuring reliable and consistent performance in a cardan joint requires attention to various factors, including proper design, maintenance, and operating practices. By following best practices and considering key considerations, the reliability and performance of a cardan joint can be optimized. Here’s a detailed explanation:

1. Proper Design and Selection: The first step is to ensure the cardan joint is properly designed and selected for the intended application. Consider factors such as load requirements, operating conditions (including speed and temperature), misalignment angles, and torque transmission needs. Choose a cardan joint that is appropriately sized and rated to handle the specific demands of the application.

2. Material Selection: Selecting the appropriate materials for the cardan joint is crucial for long-term performance. Consider factors such as strength, fatigue resistance, and corrosion resistance. The materials should be compatible with the operating environment and any potential exposure to chemicals, moisture, or extreme temperatures.

3. Regular Inspection and Maintenance: Implement a regular inspection and maintenance schedule to identify any signs of wear, damage, or misalignment. This includes checking for excessive play, backlash, or abnormal vibrations. Regularly lubricate the joint as per the manufacturer’s recommendations and ensure that seals are intact to prevent contamination.

4. Alignment and Installation: Proper alignment during installation is critical for optimal performance. Ensure that the joint is aligned correctly with the connected shafts to minimize misalignment and reduce stress on the joint. Precise alignment helps to minimize wear, maximize torque transmission efficiency, and extend the life of the joint.

5. Load Considerations: Be mindful of the loads applied to the cardan joint. Avoid exceeding the recommended load limits and consider factors such as shock loads, torsional forces, and variations in load during operation. Excessive loads can lead to premature wear, fatigue, and failure of the joint.

6. Temperature Management: Maintain suitable operating temperatures for the cardan joint. Excessive heat or extreme temperature fluctuations can affect the performance and longevity of the joint. Ensure proper cooling or lubrication mechanisms are in place if operating conditions generate significant heat.

7. Training and Operator Awareness: Provide proper training to operators and maintenance personnel regarding the cardan joint’s operation, maintenance requirements, and potential failure modes. Encourage regular inspection and reporting of any abnormalities to address issues promptly.

8. Consider Additional Measures: Depending on the application and specific requirements, additional measures can be implemented to enhance performance and reliability. This may include incorporating backlash compensation systems, using precision-aligned cardan joints, or integrating monitoring systems to detect early signs of wear or misalignment.

By considering these factors and implementing best practices, reliable and consistent performance can be achieved in a cardan joint. Regular monitoring, maintenance, and prompt corrective actions are essential to ensure the joint operates optimally and delivers the expected performance throughout its service life.

cardan shaft

How do you install a cardan joint?

Installing a cardan joint involves several steps to ensure proper alignment, secure attachment, and reliable operation. Here’s a detailed explanation of the process for installing a cardan joint:

  1. Prepare the Components: Gather all the necessary components for the installation, including the cardan joint, yokes, bearings, retaining rings, and any additional hardware required. Ensure that the components are clean and free from dirt, debris, or damage.
  2. Align the Shafts: Position the input and output shafts that will be connected by the cardan joint. Align the shafts as closely as possible to minimize misalignment. The shafts should be collinear and positioned at the desired angle or position for the specific application.
  3. Attach the Yokes: Attach the yokes to the input and output shafts. The yokes typically have holes or bores that match the diameter of the shafts. Securely fasten the yokes to the shafts using appropriate fasteners, such as set screws or bolts. Ensure that the yokes are tightly secured to prevent any movement or slippage during operation.
  4. Assemble the Cardan Joint: Assemble the cardan joint by connecting the yokes with the cross-shaped component. The cross should fit snugly into the yoke holes or bores. Apply a suitable lubricant to the bearings to ensure smooth rotation and reduce friction. Some cardan joints may have retaining rings or clips to secure the bearings in place. Make sure all the components are properly aligned and seated.
  5. Check for Clearance: Verify that there is adequate clearance between the cardan joint and any surrounding components, such as chassis or housing. Ensure that the cardan joint can rotate freely without any obstructions or interference. If necessary, adjust the positioning or mounting of the cardan joint to provide sufficient clearance.
  6. Perform a Trial Run: Before finalizing the installation, perform a trial run to check the functionality of the cardan joint. Rotate the connected shafts manually or with a suitable power source and observe the movement of the joint. Ensure that there are no unusual noises, binding, or excessive play. If any issues are detected, investigate and address them before proceeding.
  7. Secure the Cardan Joint: Once the functionality is confirmed, secure the cardan joint in its final position. This may involve tightening additional fasteners or locking mechanisms to keep the joint in place. Use the appropriate torque specifications provided by the manufacturer to ensure proper tightening without damaging the components.
  8. Perform Final Checks: Double-check all the connections, fasteners, and clearances to ensure that everything is properly installed and secured. Verify that the cardan joint operates smoothly and without any issues. Inspect the entire system for any signs of misalignment, excessive vibration, or other abnormalities.

It is important to follow the specific installation instructions provided by the manufacturer of the cardan joint, as different designs and configurations may have specific requirements. If you are unsure or unfamiliar with the installation process, it is recommended to consult the manufacturer’s documentation or seek assistance from a qualified professional to ensure a proper and safe installation of the cardan joint.

China factory Swp-D Type No Telescopic Long Universal Coupling Flexible Cardan Shaft Universal Joint  China factory Swp-D Type No Telescopic Long Universal Coupling Flexible Cardan Shaft Universal Joint
editor by CX 2024-05-02

China supplier SWC-Wd Type Coupling Nontelescopic Shorten Cardan Shaft Coupling Universal Joint

Product Description

SWC-WD type coupling Nontelescopic Shorten Cardan Shaft Coupling

 

Product Description

SWC-WD-type cross shaft universal coupling is 1 of the most common coupling. With its characteristic structure enables not on the same axis or the axis angle greater or axial movement of a larger two-axis continuous constant angular velocity rotation, and reliably transmit torque and motion. Can be widely used in metallurgy, lifting, engineering, transportation, mining, oil, shipbuilding, coal, rubber, paper machinery and other heavy machinery industry, mechanical shafting transmitting torque.

Product Parameters

Advantages

1. The ability to have a large angle compensation.

2. The structure is compact and reasonable. SWC-WD type with integral fork, so carrying more reliable.

3. The carrying capacity. Compared with other types of the same diameter rotary joint axis, it delivers more torque, the turning diameter of restricted mechanical equipment, the complete range is more advantageous.

4. High transmission efficiency. Its transmission efficiency of 98-99.8% for high-power transmission, energy-saving effect.

5. carrying smooth, low noise, easy maintenance, assembly and disassembly.

Packaging & Shipping

FAQ

Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Rigid
Customization:
Available

|

Customized Request

cardan shaft

What are the potential limitations or drawbacks of using cardan joints?

While cardan joints offer numerous advantages in transmitting rotational motion between misaligned shafts, they also have certain limitations and drawbacks to consider. Here are some potential limitations associated with the use of cardan joints:

  • Angular Limitations: Cardan joints have limited angularity or operating angles. They are designed to operate within specific angular ranges, and exceeding these angles can cause accelerated wear, increased vibration, and potential joint failure. Extreme operating angles can lead to binding, decreased efficiency, and reduced power transmission capacity. In applications where large operating angles are required, alternative flexible coupling mechanisms or constant velocity joints may be more suitable.
  • Backlash and Torsional Stiffness: Cardan joints inherently exhibit some degree of backlash, which is the clearance or free play between the mating components. This can result in a slight delay in power transmission and can affect the precision of motion in certain applications. Additionally, cardan joints may have higher torsional stiffness compared to other coupling mechanisms, which can transmit higher vibrations and shocks to the connected components.
  • Maintenance Requirements: Cardan joints require regular maintenance to ensure proper lubrication, alignment, and performance. The lubricant needs to be regularly replenished or replaced, and the joint should be inspected for wear, misalignment, or other issues. Failure to perform adequate maintenance can result in premature wear, reduced efficiency, and potential joint failure. Maintenance procedures may require specialized tools and expertise.
  • Space and Weight: Cardan joints can occupy a significant amount of space due to their design and the need for perpendicular shafts. In applications with limited space constraints, finding suitable locations for cardan joints can be challenging. Additionally, the weight of cardan joints, especially in heavy-duty applications, can add to the overall weight of the system, which may have implications for fuel efficiency, payload capacity, or overall performance.
  • Cost: Cardan joints, particularly high-quality and precision-engineered ones, can be relatively expensive compared to other coupling mechanisms. The complex design, manufacturing tolerances, and specialized materials involved contribute to their higher cost. In cost-sensitive applications, alternative coupling solutions may be considered if the angular limitations and other drawbacks of cardan joints are not critical.
  • High-Speed Limitations: At high rotational speeds, cardan joints can experience increased vibration, imbalance, and potential for fatigue failure. The rotating components of the joint can generate centrifugal forces that impact the balance and stability of the system. In high-speed applications, careful design considerations, including balancing and vibration analysis, may be necessary to mitigate these issues.

It is important to evaluate the specific application requirements, operating conditions, and limitations when considering the use of cardan joints. While they offer versatility and flexibility in many scenarios, alternative coupling mechanisms may be more suitable in cases where the limitations and drawbacks of cardan joints pose significant challenges.

cardan shaft

How do you retrofit an existing mechanical system with a cardan joint?

When retrofitting an existing mechanical system with a cardan joint, careful planning and consideration of various factors are necessary to ensure a successful integration. The retrofitting process involves modifying the system to accommodate the cardan joint’s requirements for torque transmission and misalignment compensation. Here’s a detailed explanation of how to retrofit an existing mechanical system with a cardan joint:

  1. Evaluate the Existing System: Begin by thoroughly evaluating the existing mechanical system to understand its design, components, and operational requirements. Identify the areas where a cardan joint can be integrated effectively and assess the feasibility of retrofitting.
  2. Identify the Integration Points: Determine the specific locations within the system where the cardan joint will be installed. This could include areas where torque transmission or misalignment compensation is required, such as connections between shafts, pulleys, or other rotating components.
  3. Measurements and Compatibility: Take accurate measurements of the existing components and spaces where the cardan joint will be installed. Ensure that the dimensions and specifications of the cardan joint are compatible with the available space and the system’s requirements. Consider factors such as shaft sizes, torque ratings, misalignment angles, and operating conditions.
  4. Design Modifications: Based on the evaluation and measurements, make necessary design modifications to accommodate the cardan joint. This may involve modifying shaft ends, adding or removing components, or adjusting mounting positions. Ensure that the modifications do not compromise the structural integrity or functionality of the system.
  5. Installation and Alignment: Install the cardan joint at the identified integration points according to the manufacturer’s guidelines and engineering best practices. Pay attention to proper alignment, ensuring that the joint aligns with the shafts and other connected components. Precise alignment is crucial for efficient torque transmission and to prevent excessive wear or failure.
  6. Secure Mounting: Properly secure the cardan joint to the system, ensuring that it is firmly and securely mounted. Use appropriate fasteners, couplings, or brackets to hold the joint in place and prevent any movement or vibration that could affect its performance.
  7. Lubrication and Maintenance: Follow the manufacturer’s recommendations for lubrication and maintenance of the cardan joint. Proper lubrication helps reduce friction, wear, and heat generation, ensuring smooth operation and longevity of the joint. Establish a maintenance schedule to regularly inspect and maintain the retrofit components to prevent any potential issues.
  8. Testing and Validation: After the retrofitting is complete, perform thorough testing to validate the functionality and performance of the retrofitted system. Test for torque transmission, misalignment compensation, and overall system operation. Monitor the system during operation to ensure that the cardan joint performs as expected and does not introduce any adverse effects.

It is essential to consult with experienced engineers or professionals specializing in retrofitting and cardan joint applications during the process. They can provide valuable guidance, expertise, and assistance in selecting the appropriate cardan joint, making design modifications, and ensuring a successful retrofit of the existing mechanical system.

cardan shaft

How is a cardan joint different from other types of universal joints?

A cardan joint, also known as a universal joint or U-joint, is a specific type of universal joint design. While there are different variations of universal joints, the cardan joint has distinct characteristics that set it apart from other types. Here’s a detailed explanation of how a cardan joint differs from other universal joints:

1. Design and Structure: The cardan joint consists of two yokes and a cross-shaped member called the cross or spider. The yokes are typically fork-shaped and attached to the shafts, while the cross sits in the center, connecting the yokes. In contrast, other types of universal joints, such as the constant-velocity (CV) joint or Rzeppa joint, have different designs and structures. CV joints often use a combination of bearings and balls to transmit motion and maintain constant velocity, making them suitable for applications requiring smooth rotation without speed fluctuations.

2. Misalignment Compensation: One of the primary functions of a cardan joint is to accommodate misalignment between shafts. It can handle angular misalignment, axial misalignment, or a combination of both. The design of the cardan joint allows for the tilting of the cross as the input and output shafts rotate at different speeds. This tilting action compensates for misalignment and allows the joint to transmit motion. Other types of universal joints, such as the Oldham coupling or Hooke’s joint, have different mechanisms for compensating misalignment. For example, the Oldham coupling uses sliding slots and intermediate disks to accommodate misalignment, while Hooke’s joint uses a combination of rotating links and flexible connections.

3. Operating Range: Cardan joints are commonly used in applications where a wide range of operating angles is required. They can effectively transmit motion and torque at various angles, making them suitable for applications with non-collinear shafts. Other types of universal joints may have specific limitations or operating ranges. For instance, some types of CV joints are designed for constant velocity applications and are optimized for specific operating angles or speed ranges.

4. Applications: Cardan joints find applications in various industries, including automotive, industrial machinery, aerospace, and more. They are commonly used in drivetrain systems, power transmission systems, and applications that require flexibility, misalignment compensation, and reliable motion transmission. Other types of universal joints have their own specific applications. For example, CV joints are commonly used in automotive applications, particularly in front-wheel drive systems, where they provide smooth and constant power transmission while accommodating suspension movements.

5. Limitations: While cardan joints offer flexibility and misalignment compensation, they also have certain limitations. At extreme operating angles, cardan joints can introduce non-uniform motion, increased vibration, backlash, and potential loss of efficiency. Other types of universal joints may have their own limitations and considerations depending on their specific design and application requirements.

In summary, a cardan joint, or universal joint, is a specific type of universal joint design that can accommodate misalignment between shafts and transmit motion at various angles. Its structure, misalignment compensation mechanism, operating range, and applications differentiate it from other types of universal joints. Understanding these distinctions is crucial when selecting the appropriate joint for a specific application.

China supplier SWC-Wd Type Coupling Nontelescopic Shorten Cardan Shaft Coupling Universal Joint  China supplier SWC-Wd Type Coupling Nontelescopic Shorten Cardan Shaft Coupling Universal Joint
editor by CX 2024-04-25

China Good quality Cardan Shaft High Quality Long Flex Welding Type Cross Shaft Universal Coupling Universal Joint

Product Description

Cardan Shaft High Quality Long Flex Welding Type Cross Shaft Universal Coupling Universal Joint 

Description:
The SWC-CH long flexible welded universal joint is a Universal joint designed to transmit power between 2 misaligned shafts. It is a flexible coupling, which means it can compensate for misalignment up to 25 degrees. The SWC-CH long bend welded universal coupling is made of 35CrMo material and comes in various sizes to meet the needs of different applications. SWC-CH long bend welded universal couplings are widely used in mechanical applications such as rolling mills, punches, straighteners, crushers, ship transmissions, papermaking equipment, ordinary machinery, water pump equipment, test benches, etc.

SWC-CH Long Flexible Welded Universal Coupling Features:
1. Possess the ability to compensate for large angles.
2. The structure is compact and reasonable. The SWC-CH universal coupling is equipped with an integrated fork, making it more reliable in carrying capacity.
3. Carrying capacity. Compared to other types of rotating joint shafts with the same diameter, it provides more torque, limits the turning diameter of mechanical equipment, and has a wider range.
4. High transmission efficiency. Its transmission efficiency is 98-99.8%, suitable for high-power transmission and has energy-saving effect.
5. Smooth carrying, low noise, easy disassembly and maintenance.

SWC-CH Long Flexible Welded Universal Coupling Application:
The SWC-CH long flexible welded universal coupling is a universal and reliable coupling that is very suitable for various applications. Some of the most common applications include:
(1) Construction machinery: SWC-CH long flexible welded universal couplings are used in various construction machinery, such as excavators, bulldozers, and cranes. It helps to ensure smooth and efficient operation of the machine, even when the shafts are not fully aligned.
(2) Mining machinery: SWC-CH long flexible welded universal couplings are also used in mining machinery, such as loaders, conveyors, and drilling rigs. It helps to transfer power from the engine to the working components of the machine, even if the shaft is affected by high loads and vibrations.
(3) Agricultural machinery: SWC-CH long flexible welded universal coupling is used for tractors, harvesters, Combine harvester and other agricultural machinery. It helps to ensure smooth and efficient operation of the machine, even when the shafts are not fully aligned.
(4) Marine machinery: SWC-CH long flexible welded universal coupling is used for marine machinery such as ships. It helps to transfer power from the engine to the propeller, even if the shaft is affected by high loads and vibrations.
(5) Power generation equipment: SWC-CH long flexible welded universal coupling is used for power generation equipment, such as turbines and generators. It helps to transfer power from the prime mover to the generator, even if the shafts are not fully aligned.

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.
FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Flexible
Customization:
Available

|

Customized Request

cardan shaft

How do you address noise issues in a cardan joint?

Noise issues in a cardan joint can arise due to various factors such as misalignment, improper lubrication, wear, or imbalance. Addressing these noise issues requires a systematic approach to identify and rectify the underlying causes. Here’s a detailed explanation of the steps involved in addressing noise issues in a cardan joint:

  • Inspection and Diagnosis: The first step is to visually inspect the cardan joint and surrounding components to identify any visible signs of wear, damage, or misalignment. Additionally, examining the joint during operation can help pinpoint the source of the noise. Noise can originate from the joint itself, the connected components, or the supporting structure.
  • Misalignment Correction: Misalignment is a common cause of noise in cardan joints. If misalignment is detected, it is essential to correct it by adjusting the alignment of the joint and the connected components. This may involve realigning the shafts or adjusting the mounting positions to ensure proper alignment. Precision alignment techniques should be employed to minimize misalignment and reduce noise.
  • Lubrication Maintenance: Proper lubrication is crucial for reducing friction and noise in a cardan joint. Inadequate lubrication or using incorrect lubricants can lead to increased friction, wear, and noise. It is important to follow the manufacturer’s recommendations regarding lubrication intervals and use lubricants specifically designed for cardan joints. Regular lubrication maintenance should be carried out to ensure optimal lubrication and minimize noise generation.
  • Wear Assessment and Replacement: Wear of the joint components, such as bearings or bushings, can contribute to noise issues. If wear is detected during the inspection, it is necessary to assess the extent of wear and determine if component replacement is required. Worn-out components should be replaced with new ones of appropriate quality and specifications to restore proper functionality and reduce noise.
  • Balancing: Imbalance in the rotating components of the cardan joint, such as the driveshaft, can result in noise and vibrations. Balancing the rotating parts can help minimize these issues. Dynamic balancing techniques, either during manufacturing or through precision balancing procedures, can be employed to achieve smoother operation and reduce noise levels.
  • Noise Dampening Measures: In some cases, additional noise dampening measures may be necessary to address persistent noise issues. This can involve the use of vibration-dampening materials, such as rubber bushings or vibration isolators, at the connection points of the joint. These measures help absorb and dampen vibrations, reducing noise transmission to the surrounding structure.

By systematically addressing these factors, it is possible to mitigate noise issues in a cardan joint. It is important to consider the specific conditions and requirements of the application and consult with experts or the manufacturer if needed to ensure appropriate corrective actions are taken.

cardan shaft

Can cardan joints be used in pumps and compressors?

Yes, cardan joints can be used in pumps and compressors to transmit torque and accommodate misalignments between the driving and driven shafts. They offer several advantages that make them suitable for these applications. Here’s a detailed explanation:

1. Torque Transmission: Pumps and compressors often require the transmission of torque from the driving motor or engine to the rotating shaft that operates the pump or compressor. Cardan joints excel at transmitting torque efficiently, even at significant angles and misalignments. They can handle the high torque loads typically encountered in pump and compressor applications.

2. Misalignment Compensation: Cardan joints are designed to accommodate misalignments between the driving and driven shafts. In pumps and compressors, misalignments can occur due to factors such as thermal expansion, structural deflection, or assembly tolerances. Cardan joints can compensate for these misalignments, ensuring smooth and reliable torque transmission without excessive stress or wear on the connected components.

3. Angular Flexibility: Pumps and compressors often require flexibility in their drivetrain to adapt to different installation configurations or accommodate dynamic movements. Cardan joints provide rotational freedom and allow for angular movement, enabling the pump or compressor to adjust to changing requirements. Their universal joint design allows for smooth rotation and accommodates the required range of motion.

4. Shock and Vibration Absorption: Pumps and compressors can generate significant vibrations and shocks during operation. Cardan joints help absorb these vibrations and shocks, reducing their transmission to the rest of the drivetrain. This feature helps protect other components, such as bearings and seals, from excessive stress and wear, enhancing the overall reliability and lifespan of the pump or compressor.

5. Compact Design: Cardan joints have a relatively compact design, making them suitable for integration into pump and compressor systems where space is often limited. Their compact size allows for efficient packaging within the equipment, optimizing overall design and minimizing footprint. This is especially beneficial in applications where multiple joints are required within a confined space.

6. Durability and Strength: Pumps and compressors operate under demanding conditions, including high pressures, heavy loads, and continuous operation. Cardan joints are often constructed using durable materials such as alloy steels or high-strength alloys, providing the necessary strength and resilience to withstand these conditions. They are designed to handle the demanding loads and forces encountered in pump and compressor applications.

7. Easy Maintenance and Serviceability: Cardan joints are generally low-maintenance components. They require periodic inspection, lubrication, and replacement of worn parts, but their design often allows for easy access and replacement if needed. This facilitates maintenance activities and minimizes downtime in pump and compressor systems.

8. Cost-Effectiveness: Cardan joints offer a cost-effective solution for torque transmission in pump and compressor applications. Their durability, reliability, and long service life contribute to reduced maintenance and replacement costs. Additionally, their ability to accommodate misalignments helps minimize wear on other drivetrain components, further reducing overall maintenance expenses.

When integrating cardan joints into pump and compressor systems, it is important to consider the specific application requirements, operating conditions, and load characteristics. Proper design, selection, and installation practices should be followed to ensure optimal performance and longevity.

Consulting with engineers or experts specializing in drivetrain systems and pump/compressor design can provide valuable insights and guidance on the selection, integration, and maintenance of cardan joints for these applications.

cardan shaft

How is a cardan joint different from other types of universal joints?

A cardan joint, also known as a universal joint or U-joint, is a specific type of universal joint design. While there are different variations of universal joints, the cardan joint has distinct characteristics that set it apart from other types. Here’s a detailed explanation of how a cardan joint differs from other universal joints:

1. Design and Structure: The cardan joint consists of two yokes and a cross-shaped member called the cross or spider. The yokes are typically fork-shaped and attached to the shafts, while the cross sits in the center, connecting the yokes. In contrast, other types of universal joints, such as the constant-velocity (CV) joint or Rzeppa joint, have different designs and structures. CV joints often use a combination of bearings and balls to transmit motion and maintain constant velocity, making them suitable for applications requiring smooth rotation without speed fluctuations.

2. Misalignment Compensation: One of the primary functions of a cardan joint is to accommodate misalignment between shafts. It can handle angular misalignment, axial misalignment, or a combination of both. The design of the cardan joint allows for the tilting of the cross as the input and output shafts rotate at different speeds. This tilting action compensates for misalignment and allows the joint to transmit motion. Other types of universal joints, such as the Oldham coupling or Hooke’s joint, have different mechanisms for compensating misalignment. For example, the Oldham coupling uses sliding slots and intermediate disks to accommodate misalignment, while Hooke’s joint uses a combination of rotating links and flexible connections.

3. Operating Range: Cardan joints are commonly used in applications where a wide range of operating angles is required. They can effectively transmit motion and torque at various angles, making them suitable for applications with non-collinear shafts. Other types of universal joints may have specific limitations or operating ranges. For instance, some types of CV joints are designed for constant velocity applications and are optimized for specific operating angles or speed ranges.

4. Applications: Cardan joints find applications in various industries, including automotive, industrial machinery, aerospace, and more. They are commonly used in drivetrain systems, power transmission systems, and applications that require flexibility, misalignment compensation, and reliable motion transmission. Other types of universal joints have their own specific applications. For example, CV joints are commonly used in automotive applications, particularly in front-wheel drive systems, where they provide smooth and constant power transmission while accommodating suspension movements.

5. Limitations: While cardan joints offer flexibility and misalignment compensation, they also have certain limitations. At extreme operating angles, cardan joints can introduce non-uniform motion, increased vibration, backlash, and potential loss of efficiency. Other types of universal joints may have their own limitations and considerations depending on their specific design and application requirements.

In summary, a cardan joint, or universal joint, is a specific type of universal joint design that can accommodate misalignment between shafts and transmit motion at various angles. Its structure, misalignment compensation mechanism, operating range, and applications differentiate it from other types of universal joints. Understanding these distinctions is crucial when selecting the appropriate joint for a specific application.

China Good quality Cardan Shaft High Quality Long Flex Welding Type Cross Shaft Universal Coupling Universal Joint  China Good quality Cardan Shaft High Quality Long Flex Welding Type Cross Shaft Universal Coupling Universal Joint
editor by CX 2024-04-15

China Hot selling Swp-D Type No Telescopic Long Universal Coupling Flexible Cardan Shaft Universal Joint

Product Description

SWP-D Type No Telescopic Long Universal Coupling Flexible Cardan Shaft Universal Joint

Description:
The SWP-D long non bending universal joint coupling is a universal joint designed specifically for applications with long distances between 2 shafts. It is a double joint universal joint, which means it can work at an angle of 90 degrees. The “long” CHINAMFG indicates that the main body of the joint is longer than the standard SWP-D universal coupling, which allows it to adapt to more bending in the transmission system. The ‘no flexibility’ CHINAMFG indicates that the joint does not have a flexible coupling, which makes it harder and less susceptible to vibration. SWP-D long flexible universal joint couplings are commonly used in agricultural, construction, and mining equipment. It is also used in some automotive applications, such as transmission shafts and transfer boxes. The following are some characteristics of the SWP-D long flexible universal joint coupling: Double joint design, with a working angle of up to 90 degrees Extending the body to make the powertrain system more flexible No flexible coupling, with rigidity and vibration resistance Used in agriculture, construction, mining, and automotive applications

Advantages:
The SWP-D long flexible universal joint coupling has many advantages, including: 1. Can adapt to long distances between 2 shafts: The long body of the joint allows SWP-D to be long without flexible universal joint couplings, in order to adapt to more flexibility in the transmission system, which is very important for applications where 2 shafts are far apart. 2. Operable at angles up to 90 degrees: The double joint design of the SWP-D long flexible universal joint coupling allows it to operate at angles up to 90%, which is crucial for applications where 2 shafts are misaligned. 3. More rigid and less susceptible to vibration: SWP-D lacks flexible couplings, and the long-term absence of flexible universal joint couplings makes it more rigid and less susceptible to vibration. This is very important for applications where the transmission system is subjected to high vibration loads. 4. Durability and Durability: The SWP-D long non bending universal joint coupling is made of high-quality materials and designed for durability and durability. 5. Reducing noise and vibration: The rigid design of the SWP-D long flexible universal joint coupling helps to reduce noise and vibration in the transmission system. 6. Improving efficiency: The SWP-D long flexible universal joint coupling helps to improve the efficiency of the transmission system by reducing power loss. 7. Improving safety: The SWP-D long flexible universal joint coupling helps to improve safety by reducing the risk of transmission system failures.

Paramters:

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.
FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Rigid
Customization:
Available

|

Customized Request

cardan shaft

Are cardan joints suitable for both high-torque and high-speed applications?

Cardan joints can be used in a variety of applications, but their suitability for high-torque and high-speed applications depends on several factors. Here’s a detailed explanation of the considerations regarding the use of cardan joints in such scenarios:

1. High-Torque Applications: Cardan joints are generally well-suited for high-torque applications. The design of the joint allows for the transmission of significant torque between misaligned shafts. However, it is important to consider the specific torque requirements and operating conditions. Factors such as the size and type of the joint, the material used, and the application’s torque demands should be taken into account. In extremely high-torque applications, alternative coupling mechanisms such as gear couplings or universal joints may be more appropriate.

2. High-Speed Applications: While cardan joints can operate at relatively high speeds, there are some limitations to consider. At high rotational speeds, cardan joints can experience increased vibration, imbalance, and potential for fatigue failure. The rotating components of the joint can generate centrifugal forces, which can impact the balance and stability of the system. To mitigate these issues, careful design considerations, including balancing and vibration analysis, may be necessary. In some cases, alternative coupling mechanisms like flexible couplings or constant velocity joints may be better suited for high-speed applications.

3. Balancing and Vibration Control: Balancing the rotating components, such as the driveshaft and the joint itself, is essential for minimizing vibration issues in high-torque and high-speed applications. Imbalance can lead to increased vibrations, reduced efficiency, and potential damage to the joint and other system components. Proper balancing techniques, including dynamic balancing during manufacturing or precision balancing during installation, can help achieve smoother operation and minimize vibration problems.

4. Material Selection: The material used in the construction of the cardan joint plays a crucial role in its suitability for high-torque and high-speed applications. High-strength materials, such as alloy steels, are often preferred for their ability to handle increased torque loads. Additionally, materials with good fatigue resistance and high-speed capabilities can help ensure the durability and reliability of the joint in demanding applications.

5. Application-Specific Factors: The suitability of cardan joints for high-torque and high-speed applications also depends on the specific requirements and operating conditions of the application. Factors such as load characteristics, duty cycles, temperature, and environmental conditions should be considered. It is important to consult with the manufacturer or engineering experts to determine the appropriate size, type, and configuration of the cardan joint for a particular high-torque or high-speed application.

In summary, cardan joints can be suitable for both high-torque and high-speed applications, but careful consideration of factors such as torque requirements, speed limitations, balancing, material selection, and application-specific conditions is necessary. Evaluating these factors and consulting with experts can help determine the optimal coupling solution for a given high-torque or high-speed application.

cardan shaft

How do you calculate the efficiency of a cardan joint assembly?

Calculating the efficiency of a cardan joint assembly involves evaluating the power loss in the joint and comparing it to the input power. Efficiency is typically expressed as a percentage and provides an indication of how effectively the cardan joint transfers power from the input shaft to the output shaft. Here’s a detailed explanation:

To calculate the efficiency of a cardan joint assembly, follow these steps:

1. Measure Input Power: Determine the power being supplied to the cardan joint assembly. This can be measured using appropriate instruments such as a dynamometer or by utilizing the known power rating of the input source.

2. Measure Output Power: Measure the power being delivered by the output shaft of the cardan joint assembly. This can be done using a dynamometer or by utilizing the known power rating of the output device or load.

3. Calculate Power Loss: Calculate the power loss in the cardan joint assembly by subtracting the output power from the input power. The power loss represents the amount of power dissipated or wasted within the joint.

Power Loss = Input Power – Output Power

4. Calculate Efficiency: Divide the output power by the input power and multiply the result by 100 to obtain the efficiency as a percentage.

Efficiency = (Output Power / Input Power) * 100

The efficiency of the cardan joint assembly can be interpreted as the percentage of input power that is effectively transmitted to the output shaft. A higher efficiency indicates a more efficient power transfer, while a lower efficiency suggests a higher level of power loss within the joint.

It’s important to note that the efficiency of a cardan joint assembly can be influenced by various factors, including misalignments, lubrication conditions, wear, and operating speeds. Additionally, the efficiency may vary at different operating conditions and under varying loads. Therefore, it is advisable to perform efficiency calculations under representative operating conditions and consider the specific characteristics of the cardan joint assembly being analyzed.

By calculating the efficiency, engineers and designers can assess the performance of the cardan joint assembly, identify potential areas for improvement, and optimize the power transmission system for enhanced efficiency and overall effectiveness.

cardan shaft

How do you choose the right size cardan joint for your application?

Choosing the right size cardan joint for your application is crucial to ensure optimal performance, reliability, and longevity. Several factors need to be considered when selecting the appropriate size of a cardan joint. Here’s a detailed explanation of the key considerations:

  1. Load Capacity: Determine the maximum load that the cardan joint will need to transmit. Consider both the torque (rotational force) and the axial load (thrust) that will be applied to the joint. The load capacity of the cardan joint should exceed the maximum expected loads in your application to ensure safe and reliable operation.
  2. Operating Speed: Consider the rotational speed at which the cardan joint will be operating. Higher speeds may require specific design considerations, such as balancing, lubrication, and material selection, to ensure smooth operation and avoid premature wear or failure. Verify that the selected cardan joint is rated for the intended operating speed range.
  3. Shaft Diameter: Measure the diameter of the input and output shafts that will be connected by the cardan joint. The cardan joint should have yokes and bearings that match the shaft diameter to ensure a proper fit and reliable power transmission. It is essential to consider both shaft diameters when selecting a cardan joint.
  4. Misalignment Angle: Determine the maximum expected misalignment angle between the input and output shafts. Different types of cardan joints have different capabilities to accommodate misalignment. Consider the angular misalignment and choose a cardan joint that can handle the required range of misalignment angles in your application.
  5. Environmental Factors: Evaluate the operating environment of the cardan joint. Consider factors such as temperature, humidity, dust, chemicals, and vibration. Choose a cardan joint that is suitable for the specific environmental conditions to ensure proper functioning and longevity.
  6. Service Life and Maintenance: Consider the expected service life of the cardan joint and the maintenance requirements. Some applications may require frequent maintenance or periodic lubrication of the joint. Evaluate the ease of maintenance and factor it into your selection process.
  7. Standards and Regulations: Depending on your industry or application, there may be specific standards or regulations that dictate the requirements for cardan joints. Ensure that the selected cardan joint complies with the relevant standards and regulations for your application.

It is advisable to consult with a knowledgeable supplier or engineer specializing in power transmission components to assist you in selecting the right size cardan joint for your specific application. They can consider all the relevant factors and provide guidance to ensure optimal performance and reliability of the cardan joint in your application.

China Hot selling Swp-D Type No Telescopic Long Universal Coupling Flexible Cardan Shaft Universal Joint  China Hot selling Swp-D Type No Telescopic Long Universal Coupling Flexible Cardan Shaft Universal Joint
editor by CX 2024-04-04

China wholesaler OEM Universal Joint Kb-5153-00 Cardan Drive Shaft Coupling 30X88X50

Product Description

Features
1.Many sizes available
2.Max. angle 45 degree
3.Max. speed 1000 rpm
4.Available in various materials
5.All subcomponents very precisely machined from bar: No cheap castings or powdered metal parts, resulting in better overall and more consistent performance
6.Several subtle design innovations that optimize performance and reduce cost
7.Could manufacture products according to your drawing
Advantages
1.Application to all kinds of general mechanical situation, maximum rotate speed may reach1000~1500r/min.Our Universal Joint widely used in multiaxle drilling machine ,construction machine,packaging machine,automobile.parking facility and paper machine,medical machine,farm machine.
2.Have single -jointed type and bimodal type.
3.Each point of the largest rotation angle can be 45o.
4.Needle roller bearing,maintenance-free.
5.The hole on the finshed product tolerance is H7 according to spline , hexagonal and square hole are available as long as you request.

 

Variations offered
1.Materials for midsection(Cube and Pin): 20Cr,40Cr
2.Materials for hub: 40Cr,45#steel
3. Materials for spline: 45#steel
4.Quick-Change universal joint(Nature color)

Packing&Shipping
Package Standard suitable package / Pallet or container.
Polybag inside export carton outside, blister and Tape and reel package available.
If customers have specific requirements for the packaging, we will gladly accommodate.
Shipping 10-20working days ofter payment receipt comfirmed (based on actual quantity).
Packing standard export packing or according to customers demand.
Professional goods shipping forward.

 About MIGHTY

ZheJiang Mighty Machinery Co., Ltd. specializes in manufacturing Mechanical Power Transmission Products.We Mighty is the division/branch of SCMC Group, which is a wholly state-owned company, established in 1980.
About Mighty:
-3 manufacturing factories, we have 5 technical staff, our FTY have strong capacity for design and process design, and more than 70 workers and double shift eveyday.
-Large quality of various material purchase and stock in warhouse which ensure the low cost for the material and production in time.
-Strick quality control are apply in the whole production. 
we have incoming inspection,process inspection and final production inspection which can ensure the perfect of the goods quality.
-14 years of machining experience. Long time cooperate with the Global Buyer, make us easy to understand the csutomer and handle the export. MIGHTY’s products are mainly exported to Europe, America and the Middle East market. With the top-ranking management, professional technical support and abundant export experience, MIGHTY has established lasting and stable business partnership with many world famous companies and has got good reputation from CHINAMFG customers in international sales.

FAQ
Q: Are you trading company or manufacturer?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit. To supply customers excellent quality products with good price and punctual delivery time is our responsibility. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Technical Support
Warranty: 1 Year
Condition: New
Color: Natural Color, Silver, Black
Certification: CE, DIN, ISO
Structure: Single or Double
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

cardan shaft

How do you calculate the operating angles of a cardan joint?

The operating angles of a cardan joint can be calculated based on the angular misalignment between the input and output shafts. The operating angles are crucial for determining the joint’s performance and ensuring its proper functioning. Here’s a detailed explanation of how to calculate the operating angles of a cardan joint:

  1. Identify the Shaft Axes: Begin by identifying the axes of the input and output shafts connected by the cardan joint. These axes represent the rotational axes of the shafts.
  2. Measure the Angular Misalignments: Measure the angular misalignments between the shaft axes. The misalignments are typically measured in terms of angles, such as angular displacement in degrees or radians. There are three types of misalignments to consider:
    • Angular Misalignment (α): This refers to the angular difference between the two shaft axes in the horizontal plane (X-Y plane).
    • Parallel Misalignment (β): Parallel misalignment represents the offset or displacement between the two shaft axes in the vertical plane (Z-axis).
    • Axial Misalignment (γ): Axial misalignment refers to the shift or displacement of one shaft along its axis with respect to the other shaft.
  3. Calculate the Operating Angles: Once the misalignments are measured, the operating angles can be calculated using trigonometric functions. The operating angles are:
    • Operating Angle (θ): The operating angle is the total angular misalignment between the input and output shafts. It is calculated as the square root of the sum of the squares of the individual misalignments:

These calculated operating angles provide valuable information about the misalignment and geometry of the cardan joint. They help in selecting the appropriate joint size, determining the joint’s torque capacity, assessing potential operating issues, and ensuring proper installation and alignment of the joint within the system.

It is important to note that these calculations assume small operating angles and neglect any elastic deformation or non-linearities that may occur in the joint. In cases where larger operating angles or more precise calculations are required, advanced engineering techniques or software tools specific to cardan joint analysis may be employed.

cardan shaft

What are the safety considerations when working with cardan joints?

Working with cardan joints requires careful attention to safety to prevent accidents, injuries, and equipment damage. Cardan joints are mechanical components used for torque transmission and misalignment compensation, and they operate under various loads and conditions. Here are important safety considerations to keep in mind when working with cardan joints:

  1. Proper Training and Knowledge: Ensure that individuals working with cardan joints have proper training and understanding of their operation, installation, and maintenance. Adequate knowledge of safe working practices, procedures, and potential hazards associated with cardan joints is crucial.
  2. Personal Protective Equipment (PPE): Use appropriate personal protective equipment, such as safety glasses, gloves, and protective clothing, when handling cardan joints. PPE protects against potential hazards like flying debris, sharp edges, or accidental contact with rotating components.
  3. Lockout/Tagout: Before performing any maintenance or repair work involving cardan joints, follow lockout/tagout procedures to isolate and de-energize the system. This prevents accidental startup or movement of machinery, ensuring the safety of personnel working on or near the cardan joints.
  4. Secure Mounting and Fastening: Ensure that cardan joints are securely mounted and properly fastened to prevent unexpected movement or dislodgment during operation. Loose joints or fasteners can lead to component failure, sudden movements, or damage to other parts of the system.
  5. Torque and Load Limits: Adhere to the recommended torque and load limits specified by the manufacturer for the cardan joints. Exceeding these limits can result in premature wear, deformation, or failure of the joints, posing safety risks and compromising the overall system’s functionality.
  6. Regular Inspection and Maintenance: Implement a regular inspection and maintenance program for the cardan joints. Inspect for signs of wear, damage, or misalignment, and address any issues promptly. Lubricate the joints according to the manufacturer’s recommendations to ensure smooth operation and prevent excessive friction or overheating.
  7. Safe Handling and Lifting: When handling or lifting cardan joints, use appropriate lifting equipment and techniques. Cardan joints can be heavy, and improper lifting can lead to strain or injuries. Ensure that lifting devices have the capacity to handle the weight of the joints safely.
  8. Avoid Contact with Rotating Components: Never reach into or make contact with rotating components of a system that incorporates cardan joints while the system is in operation. Keep loose clothing, jewelry, and other items away from moving parts to prevent entanglement or injury.
  9. Proper Disposal of Used or Damaged Joints: Follow proper disposal procedures for used or damaged cardan joints. Consult local regulations and guidelines for the disposal of mechanical components to minimize environmental impact and ensure compliance with safety and waste management standards.
  10. Manufacturer’s Guidelines: Always refer to and follow the manufacturer’s guidelines, instructions, and warnings specific to the cardan joints being used. Manufacturers provide important safety information, installation procedures, and maintenance recommendations specific to their products.

By addressing these safety considerations, individuals can mitigate potential risks associated with working with cardan joints, promote a safe working environment, and ensure the reliable and efficient operation of the systems they are integrated into.

cardan shaft

What is a cardan joint and how does it work?

A cardan joint, also known as a universal joint or U-joint, is a mechanical coupling used to transmit rotational motion between two shafts that are not collinear or have a constant angular relationship. It provides flexibility and accommodates misalignment between the shafts. Here’s a detailed explanation of how a cardan joint works:

A cardan joint consists of three main components: two yokes and a cross-shaped member called the cross or spider. The yokes are attached to the ends of the shafts that need to be connected, while the cross sits in the center, connecting the yokes.

The cross has four arms that intersect at a central point, forming a cross shape. Each arm has a bearing surface or trunnion on which the yoke of the corresponding shaft is mounted. The yokes are typically fork-shaped and have holes or bearings to accommodate the trunnions of the cross.

When the input shaft rotates, it transfers the rotational motion to one of the yokes. The cross, being connected to both yokes, transmits this motion to the other yoke and subsequently to the output shaft.

The key feature of a cardan joint is its ability to accommodate misalignment between the input and output shafts. This misalignment can be angular, axial, or both. As the input and output shafts are not collinear, the angles between the shafts cause the yokes to rotate at different speeds during operation.

The universal joint’s design allows the cross to rotate freely within the yokes, while still transferring motion from one shaft to the other. When the input shaft rotates, the yoke connected to it rotates with the shaft. This rotation causes the cross to tilt, as the other yoke is fixed to the output shaft. As a result, the angle between the arms of the cross changes, allowing for the compensation of misalignment.

As the cross tilts, the relative speeds of the yokes change, but the rotational motion is still transferred to the output shaft. The cardan joint effectively converts the input shaft’s rotation into a modified rotation at the output shaft, accommodating the misalignment between the two shafts.

It’s important to note that while cardan joints provide flexibility and can handle misalignment, they introduce certain limitations. These include non-uniform motion, increased vibration, backlash, and potential loss of efficiency at extreme operating angles. Regular maintenance, proper lubrication, and adherence to manufacturer guidelines are essential to ensure the optimal performance and longevity of cardan joints.

China wholesaler OEM Universal Joint Kb-5153-00 Cardan Drive Shaft Coupling 30X88X50  China wholesaler OEM Universal Joint Kb-5153-00 Cardan Drive Shaft Coupling 30X88X50
editor by CX 2024-01-25

China supplier Made in China OEM Custom Stainless Steel Adjustable Shaft Coupling Double Cardan Universal Joint

Product Description

Product Description

 

Name Cardan
Material Steel
Shape Non-standard
Surface Grinding and polishing
Production cycle 20-60days
Length Any
Diameter Any
Tolerance ±0.001
Warranty 1 year
Serve OEM&ODM&Design service

 

Company Profile

HangZhou Xihu (West Lake) Dis. Machinery Manufacture Co., Ltd., located in HangZhou, “China’s ancient copper capital”, is a “national high-tech enterprise”. At the beginning of its establishment, the company adhering to the “to provide clients with high quality products, to provide timely service” concept, adhere to the “everything for the customer, make customer excellent supplier” for the mission.

Certifications

 

Q: Where is your company located ?
A: HangZhou ZheJiang .
Q: How could l get a sample?
A: Before we received the first order, please afford the sample cost and express fee. we will return the sample cost back
to you within your first order.
Q: Sample time?
A: Existing items: within 20-60 days.
Q: Whether you could make our brand on your products?
A: Yes. We can print your Logo on both the products and the packages if you can meet our MOQ.
Q: How to guarantee the quality of your products?
A: 1) stict detection during production. 2) Strict completely inspecion on products before shipment and intact product
packaging ensured.
Q: lf my drawings are safe?
A: Yes ,we can CHINAMFG NDA.
 

Standard Or Nonstandard: Nonstandard
Shaft Hole: 8-24
Torque: OEM/ODM/Customized
Bore Diameter: OEM/ODM/Customized
Speed: OEM/ODM/Customized
Structure: Flexible
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

cardan shaft

What are the potential limitations or drawbacks of using cardan joints?

While cardan joints offer numerous advantages in transmitting rotational motion between misaligned shafts, they also have certain limitations and drawbacks to consider. Here are some potential limitations associated with the use of cardan joints:

  • Angular Limitations: Cardan joints have limited angularity or operating angles. They are designed to operate within specific angular ranges, and exceeding these angles can cause accelerated wear, increased vibration, and potential joint failure. Extreme operating angles can lead to binding, decreased efficiency, and reduced power transmission capacity. In applications where large operating angles are required, alternative flexible coupling mechanisms or constant velocity joints may be more suitable.
  • Backlash and Torsional Stiffness: Cardan joints inherently exhibit some degree of backlash, which is the clearance or free play between the mating components. This can result in a slight delay in power transmission and can affect the precision of motion in certain applications. Additionally, cardan joints may have higher torsional stiffness compared to other coupling mechanisms, which can transmit higher vibrations and shocks to the connected components.
  • Maintenance Requirements: Cardan joints require regular maintenance to ensure proper lubrication, alignment, and performance. The lubricant needs to be regularly replenished or replaced, and the joint should be inspected for wear, misalignment, or other issues. Failure to perform adequate maintenance can result in premature wear, reduced efficiency, and potential joint failure. Maintenance procedures may require specialized tools and expertise.
  • Space and Weight: Cardan joints can occupy a significant amount of space due to their design and the need for perpendicular shafts. In applications with limited space constraints, finding suitable locations for cardan joints can be challenging. Additionally, the weight of cardan joints, especially in heavy-duty applications, can add to the overall weight of the system, which may have implications for fuel efficiency, payload capacity, or overall performance.
  • Cost: Cardan joints, particularly high-quality and precision-engineered ones, can be relatively expensive compared to other coupling mechanisms. The complex design, manufacturing tolerances, and specialized materials involved contribute to their higher cost. In cost-sensitive applications, alternative coupling solutions may be considered if the angular limitations and other drawbacks of cardan joints are not critical.
  • High-Speed Limitations: At high rotational speeds, cardan joints can experience increased vibration, imbalance, and potential for fatigue failure. The rotating components of the joint can generate centrifugal forces that impact the balance and stability of the system. In high-speed applications, careful design considerations, including balancing and vibration analysis, may be necessary to mitigate these issues.

It is important to evaluate the specific application requirements, operating conditions, and limitations when considering the use of cardan joints. While they offer versatility and flexibility in many scenarios, alternative coupling mechanisms may be more suitable in cases where the limitations and drawbacks of cardan joints pose significant challenges.

cardan shaft

Can cardan joints be used in pumps and compressors?

Yes, cardan joints can be used in pumps and compressors to transmit torque and accommodate misalignments between the driving and driven shafts. They offer several advantages that make them suitable for these applications. Here’s a detailed explanation:

1. Torque Transmission: Pumps and compressors often require the transmission of torque from the driving motor or engine to the rotating shaft that operates the pump or compressor. Cardan joints excel at transmitting torque efficiently, even at significant angles and misalignments. They can handle the high torque loads typically encountered in pump and compressor applications.

2. Misalignment Compensation: Cardan joints are designed to accommodate misalignments between the driving and driven shafts. In pumps and compressors, misalignments can occur due to factors such as thermal expansion, structural deflection, or assembly tolerances. Cardan joints can compensate for these misalignments, ensuring smooth and reliable torque transmission without excessive stress or wear on the connected components.

3. Angular Flexibility: Pumps and compressors often require flexibility in their drivetrain to adapt to different installation configurations or accommodate dynamic movements. Cardan joints provide rotational freedom and allow for angular movement, enabling the pump or compressor to adjust to changing requirements. Their universal joint design allows for smooth rotation and accommodates the required range of motion.

4. Shock and Vibration Absorption: Pumps and compressors can generate significant vibrations and shocks during operation. Cardan joints help absorb these vibrations and shocks, reducing their transmission to the rest of the drivetrain. This feature helps protect other components, such as bearings and seals, from excessive stress and wear, enhancing the overall reliability and lifespan of the pump or compressor.

5. Compact Design: Cardan joints have a relatively compact design, making them suitable for integration into pump and compressor systems where space is often limited. Their compact size allows for efficient packaging within the equipment, optimizing overall design and minimizing footprint. This is especially beneficial in applications where multiple joints are required within a confined space.

6. Durability and Strength: Pumps and compressors operate under demanding conditions, including high pressures, heavy loads, and continuous operation. Cardan joints are often constructed using durable materials such as alloy steels or high-strength alloys, providing the necessary strength and resilience to withstand these conditions. They are designed to handle the demanding loads and forces encountered in pump and compressor applications.

7. Easy Maintenance and Serviceability: Cardan joints are generally low-maintenance components. They require periodic inspection, lubrication, and replacement of worn parts, but their design often allows for easy access and replacement if needed. This facilitates maintenance activities and minimizes downtime in pump and compressor systems.

8. Cost-Effectiveness: Cardan joints offer a cost-effective solution for torque transmission in pump and compressor applications. Their durability, reliability, and long service life contribute to reduced maintenance and replacement costs. Additionally, their ability to accommodate misalignments helps minimize wear on other drivetrain components, further reducing overall maintenance expenses.

When integrating cardan joints into pump and compressor systems, it is important to consider the specific application requirements, operating conditions, and load characteristics. Proper design, selection, and installation practices should be followed to ensure optimal performance and longevity.

Consulting with engineers or experts specializing in drivetrain systems and pump/compressor design can provide valuable insights and guidance on the selection, integration, and maintenance of cardan joints for these applications.

cardan shaft

What are the benefits of using a cardan joint in a mechanical system?

A cardan joint, also known as a universal joint or U-joint, offers several benefits when used in a mechanical system. These benefits contribute to efficient power transmission, flexibility, and the ability to accommodate misalignment. Here’s a detailed explanation of the advantages of using a cardan joint:

  • Misalignment Compensation: One of the primary advantages of a cardan joint is its ability to accommodate misalignment between the input and output shafts. The flexible design of the joint allows for angular misalignment, axial misalignment, or a combination of both. This capability is particularly useful in applications where the shafts are not perfectly aligned, or where movement and flexibility are required.
  • Power Transmission: Cardan joints are efficient in transmitting rotational motion and torque between non-collinear shafts. They maintain a constant velocity ratio between the input and output shafts, ensuring smooth power transmission. This feature is especially beneficial in applications where a consistent and uninterrupted transfer of power is essential, such as drivetrain systems in vehicles and industrial machinery.
  • Flexibility and Articulation: The flexible nature of a cardan joint allows for articulation and movement between the connected shafts. It enables the mechanical system to adapt to changing angles, positions, or misalignment during operation. This flexibility is particularly advantageous in applications that involve variable operating conditions, such as vehicles navigating uneven terrain or machinery with moving components.
  • Torsional Vibration Damping: Cardan joints can help dampen torsional vibrations that may occur in a mechanical system. The cross-shaped design of the joint, combined with the flexibility of the bearings, can absorb and mitigate torsional vibrations, reducing stress on the components and improving overall system performance and durability.
  • Compact Design: Cardan joints have a relatively compact design, allowing them to be easily integrated into various mechanical systems. They occupy less space compared to other types of power transmission components, making them suitable for applications with limited installation space or where weight reduction is a concern.
  • Cost-Effectiveness: Cardan joints are generally cost-effective compared to alternative power transmission solutions. Their simple design, ease of manufacturing, and wide availability contribute to their affordability. Additionally, their durability and ability to handle misalignment can reduce the need for frequent maintenance or replacement, leading to cost savings in the long run.

These benefits make cardan joints a versatile and valuable component in numerous mechanical systems across industries such as automotive, industrial machinery, aerospace, marine, and more. Their ability to transmit power efficiently, accommodate misalignment, and provide flexibility contribute to improved performance, reliability, and operational efficiency of the overall mechanical system.

China supplier Made in China OEM Custom Stainless Steel Adjustable Shaft Coupling Double Cardan Universal Joint  China supplier Made in China OEM Custom Stainless Steel Adjustable Shaft Coupling Double Cardan Universal Joint
editor by CX 2023-12-01

China Good quality Industrial Universal Joint Cardan Shaft Coupling wholesaler

Product Description

Telescopic flange long cardan shaft Coupling(SWP-A)

SWP partition profile bearing the cross shaft universal coupling products: replacement of bearings for, SWP type cardan design bearing split shaft bolt, suitable for hoisting and conveying machinery and other heavy machinery, connecting 2 different axis transmission shaft, axis angle of A~F type not more than 10 degrees, the G type is not greater than 5 degrees.

♦Product Structure

♦Basic Parameter And Main Dimension

Type Tactical diameter
D
mm
 
Nominal torque
Tn
kN·m
Fatique torque Tf
kN·m
Axis
angle
β
(°)
Stretch
length
S
mm
Size(mm) Rotary
inertia
kg·m2
 
Mass
kg
Lmin D1
js11
D2
H7
D3 E E1 B×h h1 L1 n-d Lmin Increase
100
Lmin Increase
100
SWP160A 160 16 8 ≤10 50 660 140 95 114 15 4 20×12 6 85 6-13 0.13 0.0059 47 2.1
SWP180A 180 20 10 ≤10 60 752 155 105 121 15 4 24×14 7 95 6-15 0.22 0.0072 60 2.3
SWP200A 200 31.5 16 ≤10 70 823 175 125 17 17 5 28×16 8 110 8-15 0.37 0.0114 81 3.4
SWP225A 225 40 20 ≤10 76 933 196 135 152 20 5 32×18 9 130 8-17 0.63 0.5710 109 6.6
SWP250A 250 63 31.5 ≤10 80 978 218 150 168 25 5 40×25 12.5 135 8-19 1.02 0.0407 147 7.3
SWP285A 285 90 45 ≤10 100 1133 245 170 194 27 7 40×30 15 150 8-21 2.17 0.0702 241 9.4
SWP315A 315 140 63 ≤10 110 1250 280 185 219 32 7 40×30 15 170 10-23 3.86 0.1144 322 12.0
SWP350A 350 180 90 ≤10 120 1380 310 210 245 35 8 50×32 16 185 10-23 6.66 0.1663 428 13.6
SWP390A 390 250 112 ≤10 120 1495 345 235 273 40 8 70×36 18 205 10-25 11.53 0.2695 566 18.0
SWP435A 435 355 160 ≤10 150 1710 385 255 299 42 10 80×40 20 235 16-28 21.81 0.3645 932 20.0
SWP480A 480 450 224 ≤10 170 1910 425 275 351 47 12 90×45 22.5 265 16-31 38.04 0.7571 1294 28.0
SWP550A 550 710 315 ≤10 190 2135 492 320 402 50 12 100×45 22.5 290 16-31 61.28 1.1842 1744 35.7
SWP600A 600 1000 500 ≤10 210 3580 544 380 450 55 15 90×55 27.5 360 22-34 98.63 1.7159 2330 40.5
SWP640A 640 1250 630 ≤10 230 2685 575 385 480 60 15 100×60 30 385 18-38 167.67 2.3080 3153 48.3

·Note:L is the length of installation,including the value of S/Z shrinkage.

♦Product Show

♦Cardan Shaft Types
We can supply you SWP,SWC,WSD,WS universal coupling as following:
Welded shaft type with length compensation / expansion joint

Short type with length compensation / expansion joint

Short type without length compensation / expansion joint

Long type without length compensation / expansion joint

Double flange with length compensation / expansion joint

Long type with big length compensation / big expansion joint

Super Short type with length compensation / expansion joint

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS,WSD,WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JMIJ,JMII,JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

♦Our Company
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. To perfect our service, we provide the products with good quality at the reasonable price.

Welcome to customize products from our factory and please provide your design drawings or contact us if you need other requirements.

♦Our Services
1.Design Services
Our design team has experience in cardan shaft relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2.Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping

3.Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4.Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5.Quality Control
Every step should be special test by Professional Staff according to the standard of ISO9001 and TS16949.

FAQ
Q 1: Are you trading company or manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks of PDF or AI format.

Q 3:How long is your delivery time?
Generally it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples ? Is it free or extra ?
Yes, we could offer the sample but not for free.Actually we have a very good price principle, when you make the bulk order then cost of sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 month under normal circumstance. 

Q 6: What is the MOQ?
A:Usually our MOQ is 1pcs.

Q 7: Do you have inspection procedures for coupling ?
A:100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order? 
A: Sure,welcome to visit our factory.

Q 9: What’s your payment?
A:1) T/T. 2) L/C 

Contact Us
Web: huadingcoupling
 
 
Add: No.1 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

Standard Length Splined Shafts

Standard Length Splined Shafts are made from Mild Steel and are perfect for most repair jobs, custom machinery building, and many other applications. All stock splined shafts are 2-3/4 inches in length, and full splines are available in any length, with additional materials and working lengths available upon request and quotation. CZPT Manufacturing Company is proud to offer these standard length shafts.
splineshaft

Disc brake mounting interfaces that are splined

There are 2 common disc brake mounting interfaces, splined and center lock. Disc brakes with splined interfaces are more common. They are usually easier to install. The center lock system requires a tool to remove the locking ring on the disc hub. Six-bolt rotors are easier to install and require only 6 bolts. The center lock system is commonly used with performance road bikes.
Post mount disc brakes require a post mount adapter, while flat mount disc brakes do not. Post mount adapters are more common and are used for carbon mountain bikes, while flat mount interfaces are becoming the norm on road and gravel bikes. All disc brake adapters are adjustable for rotor size, though. Road bikes usually use 160mm rotors while mountain bikes use rotors that are 180mm or 200mm.
splineshaft

Disc brake mounting interfaces that are helical splined

A helical splined disc brake mounting interface is designed with a splined connection between the hub and brake disc. This splined connection allows for a relatively large amount of radial and rotational displacement between the disc and hub. A loosely splined interface can cause a rattling noise due to the movement of the disc in relation to the hub.
The splines on the brake disc and hub are connected via an air gap. The air gap helps reduce heat conduction from the brake disc to the hub. The present invention addresses problems of noise, heat, and retraction of brake discs at the release of the brake. It also addresses issues with skewing and dragging. If you’re unsure whether this type of mounting interface is right for you, consult your mechanic.
Disc brake mounting interfaces that are helix-splined may be used in conjunction with other components of a wheel. They are particularly useful in disc brake mounting interfaces for hub-to-hub assemblies. The spacer elements, which are preferably located circumferentially, provide substantially the same function no matter how the brake disc rotates. Preferably, 3 spacer elements are located around the brake disc. Each of these spacer elements has equal clearance between the splines of the brake disc and the hub.
Spacer elements 6 include a helical spring portion 6.1 and extensions in tangential directions that terminate in hooks 6.4. These hooks abut against the brake disc 1 in both directions. The helical spring portion 5.1 and 6.1 have stiffness enough to absorb radial impacts. The spacer elements are arranged around the circumference of the intermeshing zone.
A helical splined disc mount includes a stabilizing element formed as a helical spring. The helical spring extends to the disc’s splines and teeth. The ends of the extension extend in opposite directions, while brackets at each end engage with the disc’s splines and teeth. This stabilizing element is positioned axially over the disc’s width.
Helical splined disc brake mounting interfaces are popular in bicycles and road bicycles. They’re a reliable, durable way to mount your brakes. Splines are widely used in aerospace, and have a higher fatigue life and reliability. The interfaces between the splined disc brake and BB spindle are made from aluminum and acetate.
As the splined hub mounts the disc in a helical fashion, the spring wire and disc 2 will be positioned in close contact. As the spring wire contacts the disc, it creates friction forces that are evenly distributed throughout the disc. This allows for a wide range of axial motion. Disc brake mounting interfaces that are helical splined have higher strength and stiffness than their counterparts.
Disc brake mounting interfaces that are helically splined can have a wide range of splined surfaces. The splined surfaces are the most common type of disc brake mounting interfaces. They are typically made of stainless steel or aluminum and can be used for a variety of applications. However, a splined disc mount will not support a disc with an oversized brake caliper.

China Good quality Industrial Universal Joint Cardan Shaft Coupling   wholesaler China Good quality Industrial Universal Joint Cardan Shaft Coupling   wholesaler

China Best Sales CNC Machining Stainless Steel Universal Double Cardan Joint Shaft Coupling Multi-Directional Rotation Accessories near me manufacturer

Product Description

CNC Machining Stainless Steel Universal Double Cardan Joint Shaft Coupling Multi-Directional Rotation Accessories

Utrunk is a CNC precision machining factory, and specializes in manufacturing CNC machining parts according to customers’ drawings or samples.
The cnc machining part shown here just  for your reference, we never sell them to others customer, and there is no stock.
If you have any parts made via CNC machining processing, please feel free to contact us. We would like to offer you a best quote with high quality and  competitive prices base on our  integrity machining service and rich experience manufacture ability.

Detailed Descriptions (Payment Terms/Shipment Terms/Lead time/Min. Order):
Name CNC machined parts
Available materials Steel, Aluminum, Alloy ,Brass, Copper, Bronze, Nylon, Acrylic etc
Process CNC milling and turning, drilling, grinding, bending, stamping, tapping
Tolerance: 0.005mm~0.1mm
Surface Roughness  Ra1.6-3.2
DRW format  PDF/DWG/IGS/STP/ etc
Equipment CNC machining center, CNC turning, General milling machines.  
Capacity: 10,000pieces per month
MOQ: 1-10pcs
Machining Scope: 1). Equipment/Machinery
2). Medical & Technological parts 
3). The Automotive/motorcycle parts
4). The telecommunication parts
5). The power tool parts 
6). Bicycle parts
7). The agricultural parts 
8). Hardware
QC System: 100% inspection before shipment
Payment term T/T ,Pay Pal, West Union
Surface treatment Anodizing, zinc/chrome/nickel/silver/gold Plating, Polish, Imitation, , Heat treatment etc
Lead time 7-25days according to order Qty
Shipment Terms: 1) 0-100kg: air freight priority
2) >100kg: sea freight priority
3) As per customized specifications
Packing 1. Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Send the sample by express, 3~5 days door to door service.
Note: All parts are custom made according to customer’s drawings or samples, no stock.
If you have any parts to be made, please feel free to send your kind drawings/samples to us.

 

 

View more products,click here…

HangZhou CZPT Precision Co., Ltd. is a metal stamping processing and production enterprise with more than 16 years of experience, the main business: All kinds of precision metal stamping molds, metal stamping shrapnel, automotive hardware parts, precision drawing parts, hardware clips, heat sink, CNC computer gongs, mobile power shell and so on. And provide design and drawing services for customers, reduce the modification of product design, shorten the development cycle, solve the mold and parts design and processing worries, so that products can be brought to market faster. 

The company has a group of outstanding machinery, electronics, automatic control and other aspects of senior technical talent, has advanced mold design software and senior design engineers, mold manufacturing technicians, relying on professional design techniques, combined with years of experience in the production practice, on the basis of excellent quality, guided by market demand, and close cooperation with several research institutions at home and abroad, The company’s advanced production technology, perfect management system, reliable quality control system and serious, fast, perfect service attitude, won the recognition and support of customers at home and abroad. 

Now our customers are mainly distributed in the United States, Germany, Canada, Britain, France and so on. The company attaches great importance to the construction of engineering, quality and foreign trade team, we are equipped with perfect engineering, quality and foreign trade personnel. In addition, in order to better serve customers and reduce the occurrence of quality problems, our team will regularly visit customers abroad to understand their technical and quality requirements. 

The company has set up a dedicated technology research and development department, and has an experienced and innovative technology research and development team.

Provide professional services such as drawing,design,production samples, assembly and debugging for all customers.

What makes CZPT different from other machining company is that CZPT is the label of superior quality and high efficiency.We have imported much high-tech equipment during these years,for example,4 axis CNC machining center,which enables us to make complex and micro machine precision parts faster than ever.

1.Q:Are you a direct manufacturer?
   A:Yes,we are direct manufacturer.We have been in this domain since 2005. And if you want, we could chatting with you on video via Wechat/Whatsapp/Messenger and any way you like to show you our plant.

2.Q:How can you guarantee quality?
   A: Always a pre-production sample before mass production;
        Always final Inspection before shipment;
        Always full-inspection we have.

3.Q:What kind of service/products you provide?
   A:1.Service of ODM&OEM/one-stopservice/assembly;From mold design,mold making, machining.fabrication,welding,surface,
treatment,assembly,packing to shipping
      2.Automotive parts,bicycle parts,motorcycle parts,scooter parts,racing parts,audio products, medical equipment parts, electronic instruments parts,kitchen and bathroom products and other hardware parts.
      3.Iron/stainlesssteel/aluminum/titanium/brass/bronze/steel alloys/hardened parts/any kind of precision parts you need.
      4.Automatic lathe turning parts,milling parts,bending parts,welding parts,stamping parts.
All kinds of hardware could be customized here,your precious contact is much welcomed!

4.Q:Why should we buy from you not from other suppliers?
   A:We have own plant and 80% of staff(especially the technical staff)in our company have experience for over 20 vears.

 

Different parts of the drive shaft

The driveshaft is the flexible rod that transmits torque between the transmission and the differential. The term drive shaft may also refer to a cardan shaft, a transmission shaft or a propeller shaft. Parts of the drive shaft are varied and include:
The driveshaft is a flexible rod that transmits torque from the transmission to the differential

When the driveshaft in your car starts to fail, you should seek professional help as soon as possible to fix the problem. A damaged driveshaft can often be heard. This noise sounds like “tak tak” and is usually more pronounced during sharp turns. However, if you can’t hear the noise while driving, you can check the condition of the car yourself.
The drive shaft is an important part of the automobile transmission system. It transfers torque from the transmission to the differential, which then transfers it to the wheels. The system is complex, but still critical to the proper functioning of the car. It is the flexible rod that connects all other parts of the drivetrain. The driveshaft is the most important part of the drivetrain, and understanding its function will make it easier for you to properly maintain your car.
Driveshafts are used in different vehicles, including front-wheel drive, four-wheel drive, and front-engine rear-wheel drive. Drive shafts are also used in motorcycles, locomotives and ships. Common front-engine, rear-wheel drive vehicle configurations are shown below. The type of tube used depends on the size, speed and strength of the drive shaft.
The output shaft is also supported by the output link, which has 2 identical supports. The upper part of the drive module supports a large tapered roller bearing, while the opposite flange end is supported by a parallel roller bearing. This ensures that the torque transfer between the differentials is efficient. If you want to learn more about car differentials, read this article.
air-compressor

It is also known as cardan shaft, propeller shaft or drive shaft

A propshaft or propshaft is a mechanical component that transmits rotation or torque from an engine or transmission to the front or rear wheels of a vehicle. Because the axes are not directly connected to each other, it must allow relative motion. Because of its role in propelling the vehicle, it is important to understand the components of the driveshaft. Here are some common types.
Isokinetic Joint: This type of joint guarantees that the output speed is the same as the input speed. To achieve this, it must be mounted back-to-back on a plane that bisects the drive angle. Then mount the 2 gimbal joints back-to-back and adjust their relative positions so that the velocity changes at 1 joint are offset by the other joint.
Driveshaft: The driveshaft is the transverse shaft that transmits power to the front wheels. Driveshaft: The driveshaft connects the rear differential to the transmission. The shaft is part of a drive shaft assembly that includes a drive shaft, a slip joint, and a universal joint. This shaft provides rotational torque to the drive shaft.
Dual Cardan Joints: This type of driveshaft uses 2 cardan joints mounted back-to-back. The center yoke replaces the intermediate shaft. For the duplex universal joint to work properly, the angle between the input shaft and the output shaft must be equal. Once aligned, the 2 axes will operate as CV joints. An improved version of the dual gimbal is the Thompson coupling, which offers slightly more efficiency at the cost of added complexity.
air-compressor

It transmits torque at different angles between driveline components

A vehicle’s driveline consists of various components that transmit power from the engine to the wheels. This includes axles, propshafts, CV joints and differentials. Together, these components transmit torque at different angles between driveline components. A car’s powertrain can only function properly if all its components work in harmony. Without these components, power from the engine would stop at the transmission, which is not the case with a car.
The CV driveshaft design provides smoother operation at higher operating angles and extends differential and transfer case life. The assembly’s central pivot point intersects the joint angle and transmits smooth rotational power and surface speed through the drivetrain. In some cases, the C.V. “U” connector. Drive shafts are not the best choice because the joint angles of the “U” joints are often substantially unequal and can cause torsional vibration.
Driveshafts also have different names, including driveshafts. A car’s driveshaft transfers torque from the transmission to the differential, which is then distributed to other driveline components. A power take-off (PTO) shaft is similar to a prop shaft. They transmit mechanical power to connected components. They are critical to the performance of any car. If any of these components are damaged, the entire drivetrain will not function properly.
A car’s powertrain can be complex and difficult to maintain. Adding vibration to the drivetrain can cause premature wear and shorten overall life. This driveshaft tip focuses on driveshaft assembly, operation, and maintenance, and how to troubleshoot any problems that may arise. Adding proper solutions to pain points can extend the life of the driveshaft. If you’re in the market for a new or used car, be sure to read this article.

it consists of several parts

“It consists of several parts” is 1 of 7 small prints. This word consists of 10 letters and is 1 of the hardest words to say. However, it can be explained simply by comparing it to a cow’s kidney. The cocoa bean has several parts, and the inside of the cocoa bean before bursting has distinct lines. This article will discuss the different parts of the cocoa bean and provide a fun way to learn more about the word.
air-compressor

Replacement is expensive

Replacing a car’s driveshaft can be an expensive affair, and it’s not the only part that needs servicing. A damaged drive shaft can also cause other problems. This is why getting estimates from different repair shops is essential. Often, a simple repair is cheaper than replacing the entire unit. Listed below are some tips for saving money when replacing a driveshaft. Listed below are some of the costs associated with repairs:
First, learn how to determine if your vehicle needs a driveshaft replacement. Damaged driveshaft components can cause intermittent or lack of power. Additionally, improperly installed or assembled driveshaft components can cause problems with the daily operation of the car. Whenever you suspect that your car needs a driveshaft repair, seek professional advice. A professional mechanic will have the knowledge and experience needed to properly solve the problem.
Second, know which parts need servicing. Check the u-joint bushing. They should be free of crumbs and not cracked. Also, check the center support bearing. If this part is damaged, the entire drive shaft needs to be replaced. Finally, know which parts to replace. The maintenance cost of the drive shaft is significantly lower than the maintenance cost. Finally, determine if the repaired driveshaft is suitable for your vehicle.
If you suspect your driveshaft needs service, make an appointment with a repair shop as soon as possible. If you are experiencing vibration and rough riding, driveshaft repairs may be the best way to prevent costly repairs in the future. Also, if your car is experiencing unusual noise and vibration, a driveshaft repair may be a quick and easy solution. If you don’t know how to diagnose a problem with your car, you can take it to a mechanic for an appointment and a quote.

China Best Sales CNC Machining Stainless Steel Universal Double Cardan Joint Shaft Coupling Multi-Directional Rotation Accessories   near me manufacturer China Best Sales CNC Machining Stainless Steel Universal Double Cardan Joint Shaft Coupling Multi-Directional Rotation Accessories   near me manufacturer