China OEM CZPT Wsp Type Telescopic Universal Joints Transmission Connection Cardan Joint

Product Description

 WSP Type Telescopic Universal Joints(JB/T 5901-1991)

Product Description

 

♦Description

Telescopic universal joints contain a telescopic intermediate element that allows for simpler and faster repositioning compared to double universal joints. The length can be easily adjusted in axial misalignment.

A telescopic universal joint consist of 2 gimbals, essentially an extended double joint that addresses distance and offset issues between the driver and driven load.

HUADING telescopic universal joints are available in a variety of sizes, with heat and corrosion resistance, and we can provide shorter or longer lengths for special orders.

 

♦Detailed Pictures

♦Basic Parameter and Main Dimension

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS, WSD, WSP
Cardan Shaft SWC, SWP, SWZ
Tooth Coupling CL, CLZ, GCLD, GIICL
GICL, NGCL, GGCL, GCLK
Disc Coupling JMI, JMIJ, JMII, JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

 

Company Profile

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.

Advanced and reasonable process, complete detection means. Our company actively introduce foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.

Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

 

 

♦Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
Raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning → Assembly→ Packing → Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5. Quality Control
Every step should be a special test by Professional Staff according to the standard of ISO9001 and TS16949.

♦FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2: Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3: How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have a very good price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1 pcs.

Q 7: Do you have inspection procedures for coupling?
A: 100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A: T/T. 

♦Contact Us
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24 Months
Warranty: 12 Months
Condition: New
Color: as Your Requirement
Certification: ISO
Structure: Telescopic
Samples:
US$ 200/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

cardan shaft

What is the lifespan of a typical cardan joint?

The lifespan of a typical cardan joint can vary depending on several factors, including the quality of the joint, the operating conditions, maintenance practices, and the specific application. Here’s a detailed explanation of the factors that can influence the lifespan of a cardan joint:

  • Quality and Materials: The quality of the cardan joint and the materials used in its construction play a significant role in determining its lifespan. High-quality joints manufactured from durable materials, such as alloy steels or other suitable alloys, tend to have longer lifespans compared to lower-quality or poorly constructed joints. The joint’s ability to withstand the applied loads, resist fatigue, and maintain its structural integrity over time contributes to its overall lifespan.
  • Operating Conditions: The operating conditions in which the cardan joint is used can impact its lifespan. Factors such as torque levels, rotational speeds, operating temperatures, and environmental conditions (e.g., presence of corrosive substances or contaminants) can affect the joint’s performance and durability. Operating the joint within its specified limits, avoiding excessive loads or speeds, and providing suitable environmental protection can help prolong its lifespan.
  • Maintenance and Lubrication: Regular maintenance and proper lubrication are essential for maximizing the lifespan of a cardan joint. Adequate lubrication helps reduce friction, wear, and the potential for damage due to inadequate lubricant film. Regular maintenance practices, including inspection for wear, alignment checks, and timely replacement of worn or damaged components, can help identify and address issues before they lead to premature joint failure.
  • Application-Specific Factors: The specific application in which the cardan joint is used can influence its lifespan. Factors such as the type of machinery or equipment, the magnitude and frequency of applied loads, and the duty cycle of the joint can affect its longevity. Heavy-duty applications with high loads, frequent use, or harsh operating conditions may experience more significant wear and fatigue, potentially shortening the joint’s lifespan.
  • Proper Installation: Correct installation practices are important for ensuring the longevity of a cardan joint. Improper installation, including misalignment, inadequate torqueing of fasteners, or incorrect assembly procedures, can lead to premature wear, increased stress on the joint, and reduced lifespan. Following the manufacturer’s installation guidelines and consulting with experts if needed can help ensure proper installation and maximize the joint’s lifespan.

Considering these factors, it is challenging to provide a precise lifespan value for a typical cardan joint as it can vary widely. However, with proper selection, installation, maintenance, and adherence to operational limits, a well-designed and well-maintained cardan joint can have a lifespan of several years to several decades in many applications.

It is important to consult with the manufacturer or engineering experts familiar with the specific application and operating conditions to determine the expected lifespan and implement appropriate maintenance practices to optimize the joint’s longevity.

cardan shaft

How do you address thermal expansion and contraction in a cardan joint?

Addressing thermal expansion and contraction in a cardan joint requires careful consideration of the materials used, proper design techniques, and appropriate installation practices. By implementing strategies to accommodate thermal variations, the integrity and performance of the cardan joint can be maintained. Here’s a detailed explanation:

1. Material Selection: Choose materials for the cardan joint components that have compatible coefficients of thermal expansion. This helps to minimize the differential expansion and contraction rates between the connected parts. Selecting materials with similar thermal expansion characteristics reduces the potential for excessive stress, deformation, or binding of the joint during temperature fluctuations.

2. Clearance and Tolerance Design: Incorporate appropriate clearances and tolerances in the design of the cardan joint. Allow for slight axial or radial movement between the joint components to accommodate thermal expansion and contraction. The clearances should be designed to prevent binding or interference while maintaining proper functionality and torque transmission.

3. Lubrication: Apply suitable lubrication to the cardan joint components to minimize friction and wear. Lubrication helps to reduce the effects of thermal expansion by providing a thin film between the moving parts. The lubricant should have a high operating temperature range and maintain its properties under thermal stress.

4. Temperature Monitoring: Implement temperature monitoring systems to track the operating temperatures of the cardan joint. This allows for real-time monitoring of temperature variations and helps identify potential issues related to thermal expansion or contraction. Monitoring can be done using temperature sensors or thermal imaging techniques.

5. Installation and Preload: Pay attention to the installation process of the cardan joint. Ensure that the joint is installed with appropriate preload or axial play to allow for thermal expansion and contraction without causing excessive stress or binding. Preload should be adjusted to accommodate the expected temperature range and thermal expansion coefficients of the materials used.

6. Heat Dissipation: Consider heat dissipation mechanisms in the vicinity of the cardan joint. Proper cooling or ventilation systems can help dissipate excess heat generated during operation, minimizing temperature differentials and reducing the impact of thermal expansion and contraction on the joint.

7. Thermal Shields or Insulation: In applications where extreme temperature differentials are anticipated, thermal shields or insulation materials can be employed to limit heat transfer to the cardan joint. By reducing direct exposure to high temperatures or rapid temperature changes, the effects of thermal expansion and contraction can be mitigated.

8. System Testing and Analysis: Conduct thorough testing and analysis to assess the performance of the cardan joint under varying temperature conditions. This includes evaluating the joint’s response to thermal expansion and contraction, measuring clearances, torque transmission efficiency, and any potential issues related to temperature differentials. Testing can be done through simulation, laboratory experiments, or field trials.

By considering these strategies, thermal expansion and contraction can be addressed in a cardan joint, minimizing the risk of damage, binding, or compromised performance. It is important to evaluate the specific operating conditions, temperature ranges, and materials used in the cardan joint to determine the most appropriate approaches for addressing thermal variations.

cardan shaft

What is a cardan joint and how does it work?

A cardan joint, also known as a universal joint or U-joint, is a mechanical coupling used to transmit rotational motion between two shafts that are not collinear or have a constant angular relationship. It provides flexibility and accommodates misalignment between the shafts. Here’s a detailed explanation of how a cardan joint works:

A cardan joint consists of three main components: two yokes and a cross-shaped member called the cross or spider. The yokes are attached to the ends of the shafts that need to be connected, while the cross sits in the center, connecting the yokes.

The cross has four arms that intersect at a central point, forming a cross shape. Each arm has a bearing surface or trunnion on which the yoke of the corresponding shaft is mounted. The yokes are typically fork-shaped and have holes or bearings to accommodate the trunnions of the cross.

When the input shaft rotates, it transfers the rotational motion to one of the yokes. The cross, being connected to both yokes, transmits this motion to the other yoke and subsequently to the output shaft.

The key feature of a cardan joint is its ability to accommodate misalignment between the input and output shafts. This misalignment can be angular, axial, or both. As the input and output shafts are not collinear, the angles between the shafts cause the yokes to rotate at different speeds during operation.

The universal joint’s design allows the cross to rotate freely within the yokes, while still transferring motion from one shaft to the other. When the input shaft rotates, the yoke connected to it rotates with the shaft. This rotation causes the cross to tilt, as the other yoke is fixed to the output shaft. As a result, the angle between the arms of the cross changes, allowing for the compensation of misalignment.

As the cross tilts, the relative speeds of the yokes change, but the rotational motion is still transferred to the output shaft. The cardan joint effectively converts the input shaft’s rotation into a modified rotation at the output shaft, accommodating the misalignment between the two shafts.

It’s important to note that while cardan joints provide flexibility and can handle misalignment, they introduce certain limitations. These include non-uniform motion, increased vibration, backlash, and potential loss of efficiency at extreme operating angles. Regular maintenance, proper lubrication, and adherence to manufacturer guidelines are essential to ensure the optimal performance and longevity of cardan joints.

China OEM CZPT Wsp Type Telescopic Universal Joints Transmission Connection Cardan Joint  China OEM CZPT Wsp Type Telescopic Universal Joints Transmission Connection Cardan Joint
editor by CX 2024-04-23