China supplier Hot Forged Manufacturer OEM Steel Die Forging Swaging Cardan Joint CV Joint

Product Description

Hot Forged OEM Alloy Steel Die Forging Swaging Cardan Joint CV Joint

Product Description

 

 

   Material Friction Press Machines Unit Weight Range Min
Tolerance
   Surface treatment Heat Treatment
Carton steel, alloy steel, stainless steel    25Tons~1000Tons     0.1Kg~1000kg     0.02mm   Pickling oil , Galvanization, Chromeplate, Hot Dip, Galvanizing, Painting, PowderCoating Normalizing, Hardening, Tempering, Nitridation, Carburization

       1.WCB,LCB,stainless steel, low carbon steel and alloy steel available.
       2.Rich experience in materials ASTM WCB,LCB,low carbon steel and alloy steel.
       3.Professional tooling and process to reduce cost.
       4.Excellent surface and inner quality.
       5.Electric CHINAMFG and strict chemical composition test before cast. 

      Specifications:
      1. ISO9001:2000 certification 
      2.TUV (PED 97/23/EC & AD2000 aa W0/TRD 100) certification 
      3.Professional OEM manufacturer
      Forging:  We can provide forged ring, open-die forging, forged shaft, forged bush, forged
      shape,drop forging, precision forging, hot-pressed part, upset forging, hot-upset part, forged disc,
      perforated disc.

 

Our Advantages

 

     
       Our Feature:
       1) In-house capability: OEM service as per customers’ requests, with in-house tooling
       design & fabricating.
       2) Professional engineering capability: on product design, optimization and
       performance analysis.
       3) Manufacturing capability range: DIN 3960 class 8 to 4, ISO 1328 class 8 to 4, AGMA 2000 class
       10-15,JIS 1702-1703 class 0 to 2, etc.
       4) Packing: Tailor-made packaging method according to customer’s requirement.
       5)  Just-in-time delivery capability.

        Our Services
        1. Long standing reputation in this field.
        2. Specialization is standard and accurate meet your requirement.
        3. OEM quality standard guaranteed.
        4. Product upgrading and expansion of species.
        5. Good quality with competitive prices.
        6. Flexible and convenient logistic service.
        7. Excellent and high quality control.
        8. Long lasting working life time.
        9. Sufficient storage.
       10. Original truck spare parts and professional manufacture.
       11. High technology and stable performance.
       12. Various size and models available.

Features: Forged Steel Forging Parts from China Supplier
1) Materials: malleable iron, carbon steel, Alloy steel, stainless steel, aluminum, bronze, brass, etc.
2) Standard: JIS, DIN, ASTM, BS
3 ) Surface treatment  :Electro Zinc Plating Hot deep zinc plating, Electrophoresis, Powder
coating, Painting ,Shoot blasting etc.
4) Weight: 0.1 -10,000kg
5) Processes : Forging, CNC Machining.
6) Manufacturing equipments: 3 die-forging product lines (3-ton stamp forging hammer product line, 1000 ton friction product line, 1250 ton press product line), various loose hammers and cylinder parts , automatic control ring forging machine, heat treatment cellar, digital control fibre natural gas car furnace, standing machine tool, machine tools, standing miller,  standing drill machine, bench drill machine,CNC machining center etc
7) Testing equipment: Supersonic inspection machine, Supersonic flaw detecting machine, physics and chemical analysis.
8)Services
a) Also can design and manufacture forged according to the customers’ requirement
b) ISO9001 quality control and inspection
c) In house & Third Parties
d) Ordering and warehousing
9)Packing: Wooden cases or according to customers’ needs

Packaging & Shipping

 

 

FAQ

 

      
    1. Q: Why choose the CHINAMFG product?
    A: We sheng ao have our own plant HangZhou CHINAMFG Machinery Co., Ltd, therefore, we can
    surely promise the quality of every product and provide you comparable price.

    2. Q: Do you provide OEM Service?
    A: Yes, we provide OEM Service.
 
    3. Q: Do you provide customized forging products?
    A: Yes. Customers give us drawings and specifications, and we will manufacture accordingly.

Quality First, Price Best, Service Foremost!
We assure you of our best services at all times!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Processing Object: Metal
Molding Style: Forging
Molding Technics: Pressure Casting
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|

Order Sample

as customer required
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

cardan shaft

Are cardan joints suitable for both high-torque and high-speed applications?

Cardan joints can be used in a variety of applications, but their suitability for high-torque and high-speed applications depends on several factors. Here’s a detailed explanation of the considerations regarding the use of cardan joints in such scenarios:

1. High-Torque Applications: Cardan joints are generally well-suited for high-torque applications. The design of the joint allows for the transmission of significant torque between misaligned shafts. However, it is important to consider the specific torque requirements and operating conditions. Factors such as the size and type of the joint, the material used, and the application’s torque demands should be taken into account. In extremely high-torque applications, alternative coupling mechanisms such as gear couplings or universal joints may be more appropriate.

2. High-Speed Applications: While cardan joints can operate at relatively high speeds, there are some limitations to consider. At high rotational speeds, cardan joints can experience increased vibration, imbalance, and potential for fatigue failure. The rotating components of the joint can generate centrifugal forces, which can impact the balance and stability of the system. To mitigate these issues, careful design considerations, including balancing and vibration analysis, may be necessary. In some cases, alternative coupling mechanisms like flexible couplings or constant velocity joints may be better suited for high-speed applications.

3. Balancing and Vibration Control: Balancing the rotating components, such as the driveshaft and the joint itself, is essential for minimizing vibration issues in high-torque and high-speed applications. Imbalance can lead to increased vibrations, reduced efficiency, and potential damage to the joint and other system components. Proper balancing techniques, including dynamic balancing during manufacturing or precision balancing during installation, can help achieve smoother operation and minimize vibration problems.

4. Material Selection: The material used in the construction of the cardan joint plays a crucial role in its suitability for high-torque and high-speed applications. High-strength materials, such as alloy steels, are often preferred for their ability to handle increased torque loads. Additionally, materials with good fatigue resistance and high-speed capabilities can help ensure the durability and reliability of the joint in demanding applications.

5. Application-Specific Factors: The suitability of cardan joints for high-torque and high-speed applications also depends on the specific requirements and operating conditions of the application. Factors such as load characteristics, duty cycles, temperature, and environmental conditions should be considered. It is important to consult with the manufacturer or engineering experts to determine the appropriate size, type, and configuration of the cardan joint for a particular high-torque or high-speed application.

In summary, cardan joints can be suitable for both high-torque and high-speed applications, but careful consideration of factors such as torque requirements, speed limitations, balancing, material selection, and application-specific conditions is necessary. Evaluating these factors and consulting with experts can help determine the optimal coupling solution for a given high-torque or high-speed application.

cardan shaft

How do you calculate the effect of misalignment on the life of a cardan joint?

Calculating the effect of misalignment on the life of a cardan joint involves considering various factors such as the magnitude of misalignment, operating conditions, and the specific design characteristics of the joint. While there is no universal formula for calculating the exact life reduction due to misalignment, certain guidelines and principles can help estimate the impact. Here’s a detailed explanation:

1. Misalignment Angle: Determine the misalignment angle between the input and output shafts connected by the cardan joint. The misalignment angle represents the angular deviation from the ideal alignment. It is typically measured in degrees or radians.

2. Operating Speed: Determine the operating speed of the cardan joint in rotations per minute (RPM) or radians per second. The operating speed affects the dynamic behavior and stresses experienced by the joint.

3. Load Conditions: Consider the load conditions under which the cardan joint operates. Factors such as the magnitude, direction, and variability of the applied loads can influence the joint’s fatigue life and susceptibility to misalignment-induced stress.

4. Joint Design and Specifications: Refer to the manufacturer’s documentation or design specifications for the cardan joint. Look for information related to the joint’s allowable misalignment limits, material properties, and fatigue characteristics. Manufacturers may provide guidelines or empirical data on the expected life reduction based on misalignment.

5. Empirical Models and Guidelines: Utilize empirical models or guidelines specific to cardan joints to estimate the life reduction caused by misalignment. These models are typically based on experimental data and observations. They may consider factors such as misalignment angle, operating speed, load conditions, and joint geometry to provide estimates of the life reduction percentage.

It’s important to note that the accuracy of the calculated life reduction due to misalignment depends on the assumptions made and the validity of the models or guidelines used. The actual life reduction may vary based on the specific operating conditions, joint design, material properties, and other factors not accounted for in the calculations.

Additionally, it is advisable to consult with the cardan joint manufacturer or industry experts who specialize in power transmission components. They can provide more accurate and detailed information regarding the expected life reduction due to misalignment for a specific cardan joint design and application.

Overall, while it is challenging to quantify the exact life reduction caused by misalignment in a cardan joint, considering the factors mentioned above and utilizing available guidelines can help estimate the potential impact and make informed decisions regarding joint selection, maintenance, and operating practices.

cardan shaft

What lubrication is required for a cardan joint?

Proper lubrication is essential for the smooth operation, longevity, and reliability of a cardan joint. The lubricant used in a cardan joint serves multiple purposes, including reducing friction, preventing wear, dissipating heat, and protecting against corrosion. Here’s a detailed explanation of the lubrication requirements for a cardan joint:

  • Lubricant Type: The lubricant used for a cardan joint should be specifically designed for high-load and high-temperature applications. Grease is commonly used as the lubricant for cardan joints due to its ability to adhere to the bearings, provide continuous lubrication, and resist centrifugal forces. High-quality lithium-based or synthetic greases with EP (extreme pressure) additives are recommended for their excellent load-carrying capacity and protection against wear.
  • Lubrication Frequency: Regular lubrication is necessary to maintain optimal performance and prevent premature wear in a cardan joint. The frequency of lubrication depends on factors such as the operating conditions, load, speed, and the manufacturer’s recommendations. As a general guideline, lubrication intervals can range from several months to several thousand hours of operation. However, it is important to consult the manufacturer’s guidelines for the specific cardan joint model and application to determine the appropriate lubrication frequency.
  • Lubrication Quantity: The correct amount of lubricant should be applied to ensure proper lubrication without overfilling the joint. Insufficient lubrication can lead to increased friction and wear, while excessive lubrication can cause overheating and may lead to seal damage or leakage. Follow the manufacturer’s recommendations regarding the recommended grease quantity or fill level for the specific cardan joint model.
  • Lubrication Method: There are different methods to lubricate a cardan joint, depending on its design and accessibility. One common approach is to use a grease gun or a lubrication fitting to inject the grease into the designated lubrication points or zerk fittings on the joint. Some cardan joints may have grease nipples or fittings specifically designed for lubrication. Ensure that the lubricant is evenly distributed throughout the bearings and moving parts of the joint.
  • Monitor and Reapply: Regularly monitor the condition of the lubricant and the performance of the cardan joint. Inspect the lubrication points for any signs of contamination, depletion, or degradation of the grease. If necessary, clean the lubrication points before reapplying the lubricant. During maintenance intervals, remove any old or degraded grease and replenish with fresh lubricant as per the manufacturer’s recommendations.
  • Environmental Considerations: Take into account the operating environment of the cardan joint when selecting the lubricant. Extreme temperatures, exposure to water or chemicals, or dusty and dirty conditions may require specialized lubricants or additional protective measures. Consult the manufacturer’s guidelines or seek advice from lubricant suppliers to ensure the lubricant’s compatibility with the specific operating conditions.

Proper lubrication of a cardan joint is crucial for its optimal performance and longevity. Following the manufacturer’s recommendations regarding lubrication type, frequency, quantity, and method will help ensure smooth operation, minimize wear, and maximize the service life of the cardan joint.

China supplier Hot Forged Manufacturer OEM Steel Die Forging Swaging Cardan Joint CV Joint  China supplier Hot Forged Manufacturer OEM Steel Die Forging Swaging Cardan Joint CV Joint
editor by CX 2024-04-30